Investors Hangout Stock Message Boards Logo
  • Mailbox
  • Favorites
  • Boards
    • The Hangout
    • NASDAQ
    • NYSE
    • OTC Markets
    • All Boards
  • Whats Hot!
    • Recent Activity
    • Most Viewed Boards
    • Most Viewed Posts
    • Most Posted
    • Most Followed
    • Top Boards
    • Newest Boards
    • Newest Members
  • Blog
    • Recent Blog Posts
    • Recently Updated
    • News
    • Stocks
    • Crypto
    • Investing
    • Business
    • Markets
    • Economy
    • Real Estate
    • Personal Finance
  • Market Movers
  • Interactive Charts
  • Login - Join Now FREE!
  1. Home ›
  2. Stock Message Boards ›
  3. Stock Boards ›
  4. Quantum Materials Corp. (QTMM) Message Board

Thermal shift of the resonance between an electron

Message Board Public Reply | Private Reply | Keep | Replies (0)                   Post New Msg
Edit Msg () | Previous | Next


Post# of 22465
Posted On: 11/24/2016 1:29:35 PM
Posted By: dockzef
Thermal shift of the resonance between an electron gas and quantum dots: What is the origin?

Fabian Brinks, Andreas D. Wieck, Arne Ludwig
(Submitted on 23 Nov 2016)

The operation of quantum dots at highest possible temperatures is desirable for many applications. Capacitance-voltage spectroscopy (C(V)-spectroscopy) measurements are an established instrument to analyze the electronic structure and energy levels of self-assembled quantum dots (QDs). We perform C(V) in the dark and C(V) under the influence of non-resonant illumination, probing exciton states up to
X
4+
on InAs QDs embedded in a GaAs matrix for temperatures ranging from 2.5 K to 120 K. While a small shift in the charging spectra resonance is observed for the two pure spin degenerate electron s-state charging voltages with increasing temperature, a huge shift is visible for the electron-hole excitonic states resonance voltages. The
s
2
-peak moves to slightly higher, the
s
1
-peak to slightly lower charging voltages. In contrast, the excitonic states are surprisingly charged at much lower voltages upon increasing temperature. We derive a rate-model allowing to attribute and value different contributions to these shifts. Resonant tunnelling, state degeneracy and hole generation rate in combination with the Fermi distribution function turn out to be of great importance for the observed effects. The differences in the shifting behavior is connected to different equilibria schemes for the peaks; s-peaks arise when tunneling-in- and out-rates become equal, while excitonic peaks occur, when electron tunneling-in- and hole-generation rates are balanced.

https://arxiv.org/abs/1611.07717


(0)
(0)




Quantum Materials Corp. (QTMM) Stock Research Links


  1.  
  2.  


  3.  
  4.  
  5.  






Investors Hangout

Home

Mailbox

Message Boards

Favorites

Whats Hot

Blog

Settings

Privacy Policy

Terms and Conditions

Disclaimer

Contact Us

Whats Hot

Recent Activity

Most Viewed Boards

Most Viewed Posts

Most Posted Boards

Most Followed

Top Boards

Newest Boards

Newest Members

Investors Hangout Message Boards

Welcome To Investors Hangout

Stock Message Boards

American Stock Exchange (AMEX)

NASDAQ Stock Exchange (NASDAQ)

New York Stock Exchange (NYSE)

Penny Stocks - (OTC)

User Boards

The Hangout

Private

Global Markets

Australian Securities Exchange (ASX)

Euronext Amsterdam (AMS)

Euronext Brussels (BRU)

Euronext Lisbon (LIS)

Euronext Paris (PAR)

Foreign Exchange (FOREX)

Hong Kong Stock Exchange (HKEX)

London Stock Exchange (LSE)

Milan Stock Exchange (MLSE)

New Zealand Exchange (NZX)

Singapore Stock Exchange (SGX)

Toronto Stock Exchange (TSX)

Contact Investors Hangout

Email Us

Follow Investors Hangout

Twitter

YouTube

Facebook

Market Data powered by QuoteMedia. Copyright © 2025. Data delayed 15 minutes unless otherwise indicated (view delay times for all exchanges).
Analyst Ratings & Earnings by Zacks. RT=Real-Time, EOD=End of Day, PD=Previous Day. Terms of Use.

© 2025 Copyright Investors Hangout, LLC All Rights Reserved.

Privacy Policy |Do Not Sell My Information | Terms & Conditions | Disclaimer | Help | Contact Us