Investors Hangout Stock Message Boards Logo
  • Mailbox
  • Favorites
  • Boards
    • The Hangout
    • NASDAQ
    • NYSE
    • OTC Markets
    • All Boards
  • Whats Hot!
    • Recent Activity
    • Most Viewed Boards
    • Most Viewed Posts
    • Most Posted
    • Most Followed
    • Top Boards
    • Newest Boards
    • Newest Members
  • Blog
    • Recent Blog Posts
    • Recently Updated
    • News
    • Stocks
    • Crypto
    • Investing
    • Business
    • Markets
    • Economy
    • Real Estate
    • Personal Finance
  • Market Movers
  • Interactive Charts
  • Login - Join Now FREE!
  1. Home ›
  2. Stock Message Boards ›
  3. Stock Boards ›
  4. Quantum Materials Corp. (QTMM) Message Board

Correlated structural-optical study of single nano

Message Board Public Reply | Private Reply | Keep | Replies (0)                   Post New Msg
Edit Msg () | Previous | Next


Post# of 22465
Posted On: 05/16/2015 8:28:10 AM
Posted By: dockzef
Correlated structural-optical study of single nanocrystals in a gap-bar antenna: effects of plasmonics on excitonic recombination pathways.

(PMID:25947939)


Wang F, Karan NS, Nguyen HM, Ghosh Y, Sheehan CJ,

Hollingsworth JA, Htoon H

Center for Integrated Nanotechnologies, Materials Physics & Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. htoon@lanl.gov.

Type: Journal Article
DOI: 10.1039/c5nr00772k



Abstract Highlight Terms Highlight biological terms.
Diseases(1) Chemicals(7)


We performed time-correlated single-photon counting experiments on individual silica coated CdSe/CdS core/thick-shell nanocrystal quantum dots (a.k.a., giant NQDs [g-NQDs]), placed on the plasmonic gap-bar antennas. Optical properties were directly correlated with the scanning electron microscopy (SEM) images of g-NQD-plasmonic antenna coupled structures. The structures, in which the g-NQDs are located in the gap of the antenna, afford a coupling with up to 9.6 fold enhancement of radiative recombination rates. These coupled g-NQDs are also characterized by a strong enhancement of bi-exciton emission efficiency that increases with their radiative enhancement factor. By analysing these findings with a simple model, we show that the plasmonic field of the antenna does not alter the Auger recombination processes of the bi-exciton states. As a result, enhancements of the single and bi-exciton radiative recombination rates lead directly to bi-exciton emission enhancement. These findings suggest that a plasmonic field can be utilized effectively in achieving a strong bi-exciton emission that is needed for photon pair generation and plasmon-assisted lasing.


http://europepmc.org/abstract/MED/25947939

Great find DDHawk!












Nanoscale [2015]


(0)
(0)




Quantum Materials Corp. (QTMM) Stock Research Links


  1.  
  2.  


  3.  
  4.  
  5.  






Investors Hangout

Home

Mailbox

Message Boards

Favorites

Whats Hot

Blog

Settings

Privacy Policy

Terms and Conditions

Disclaimer

Contact Us

Whats Hot

Recent Activity

Most Viewed Boards

Most Viewed Posts

Most Posted Boards

Most Followed

Top Boards

Newest Boards

Newest Members

Investors Hangout Message Boards

Welcome To Investors Hangout

Stock Message Boards

American Stock Exchange (AMEX)

NASDAQ Stock Exchange (NASDAQ)

New York Stock Exchange (NYSE)

Penny Stocks - (OTC)

User Boards

The Hangout

Private

Global Markets

Australian Securities Exchange (ASX)

Euronext Amsterdam (AMS)

Euronext Brussels (BRU)

Euronext Lisbon (LIS)

Euronext Paris (PAR)

Foreign Exchange (FOREX)

Hong Kong Stock Exchange (HKEX)

London Stock Exchange (LSE)

Milan Stock Exchange (MLSE)

New Zealand Exchange (NZX)

Singapore Stock Exchange (SGX)

Toronto Stock Exchange (TSX)

Contact Investors Hangout

Email Us

Follow Investors Hangout

Twitter

YouTube

Facebook

Market Data powered by QuoteMedia. Copyright © 2025. Data delayed 15 minutes unless otherwise indicated (view delay times for all exchanges).
Analyst Ratings & Earnings by Zacks. RT=Real-Time, EOD=End of Day, PD=Previous Day. Terms of Use.

© 2025 Copyright Investors Hangout, LLC All Rights Reserved.

Privacy Policy |Do Not Sell My Information | Terms & Conditions | Disclaimer | Help | Contact Us