Investors Hangout Stock Message Boards Logo
  • Mailbox
  • Favorites
  • Boards
    • The Hangout
    • NASDAQ
    • NYSE
    • OTC Markets
    • All Boards
  • Whats Hot!
    • Recent Activity
    • Most Viewed Boards
    • Most Viewed Posts
    • Most Posted
    • Most Followed
    • Top Boards
    • Newest Boards
    • Newest Members
  • Blog
    • Recent Blog Posts
    • Recently Updated
    • News
    • Stocks
    • Crypto
    • Investing
    • Business
    • Markets
    • Economy
    • Real Estate
    • Personal Finance
  • Market Movers
  • Interactive Charts
  • Login - Join Now FREE!
  1. Home ›
  2. Stock Message Boards ›
  3. Stock Boards ›
  4. Quantum Materials Corp. (QTMM) Message Board

A Scalable Nanogenerator Based on Self-Poled Piezo

Message Board Public Reply | Private Reply | Keep | Replies (0)                   Post New Msg
Edit Msg () | Previous | Next


Post# of 22466
Posted On: 05/16/2015 12:14:17 AM
Posted By: dockzef
A Scalable Nanogenerator Based on Self-Poled Piezoelectric Polymer Nanowires with High Energy Conversion Efficiency

Richard Whiter, Vijay Narayan, Sohini Kar-Narayan

(Submitted on 14 May 2015)

Nanogenerators based on piezoelectric materials convert ever-present mechanical vibrations into electrical power for energetically autonomous wireless and electronic devices. Nanowires of piezoelectric polymers are particularly attractive for harvesting mechanical energy in this way, as they are flexible, lightweight and sensitive to small vibrations. Previous studies have focused exclusively on nanowires grown by electrospinning, but this involves complex equipment, and high voltages of ≈ 10 kV that electrically pole the nanowires and thus render them piezoelectric. Here we demonstrate that nanowires of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) grown using a simple and cost-effective template-wetting technique, can be successfully exploited in nanogenerators without poling. A typical nanogenerator comprising ≈ 1010 highly crystalline, self-poled, aligned nanowires spanning ≈ 2 cm2 is shown to produce a peak output voltage of 3 V at 5.5 nA in response to low-level vibrations. The mechanical-to-electrical conversion efficiency of 11% exhibited by our template-grown nanowires is comparable with the best previously reported values. Our work therefore offers a scalable means of achieving high-performance nanogenerators for the next generation of self-powered electronics.

http://arxiv.org/abs/1505.03694


(0)
(0)




Quantum Materials Corp. (QTMM) Stock Research Links


  1.  
  2.  


  3.  
  4.  
  5.  






Investors Hangout

Home

Mailbox

Message Boards

Favorites

Whats Hot

Blog

Settings

Privacy Policy

Terms and Conditions

Disclaimer

Contact Us

Whats Hot

Recent Activity

Most Viewed Boards

Most Viewed Posts

Most Posted Boards

Most Followed

Top Boards

Newest Boards

Newest Members

Investors Hangout Message Boards

Welcome To Investors Hangout

Stock Message Boards

American Stock Exchange (AMEX)

NASDAQ Stock Exchange (NASDAQ)

New York Stock Exchange (NYSE)

Penny Stocks - (OTC)

User Boards

The Hangout

Private

Global Markets

Australian Securities Exchange (ASX)

Euronext Amsterdam (AMS)

Euronext Brussels (BRU)

Euronext Lisbon (LIS)

Euronext Paris (PAR)

Foreign Exchange (FOREX)

Hong Kong Stock Exchange (HKEX)

London Stock Exchange (LSE)

Milan Stock Exchange (MLSE)

New Zealand Exchange (NZX)

Singapore Stock Exchange (SGX)

Toronto Stock Exchange (TSX)

Contact Investors Hangout

Email Us

Follow Investors Hangout

Twitter

YouTube

Facebook

Market Data powered by QuoteMedia. Copyright © 2025. Data delayed 15 minutes unless otherwise indicated (view delay times for all exchanges).
Analyst Ratings & Earnings by Zacks. RT=Real-Time, EOD=End of Day, PD=Previous Day. Terms of Use.

© 2025 Copyright Investors Hangout, LLC All Rights Reserved.

Privacy Policy |Do Not Sell My Information | Terms & Conditions | Disclaimer | Help | Contact Us