Investors Hangout Stock Message Boards Logo
  • Mailbox
  • Favorites
  • Boards
    • The Hangout
    • NASDAQ
    • NYSE
    • OTC Markets
    • All Boards
  • Whats Hot!
    • Recent Activity
    • Most Viewed Boards
    • Most Viewed Posts
    • Most Posted
    • Most Followed
    • Top Boards
    • Newest Boards
    • Newest Members
  • Blog
    • Recent Blog Posts
    • Recently Updated
    • News
    • Stocks
    • Crypto
    • Investing
    • Business
    • Markets
    • Economy
    • Real Estate
    • Personal Finance
  • Market Movers
  • Interactive Charts
  • Login - Join Now FREE!
  1. Home ›
  2. Stock Message Boards ›
  3. Stock Boards ›
  4. CytoDyn Inc (CYDY) Message Board

Thanks BB, I see the linked study within the artic

Message Board Public Reply | Private Reply | Keep | Replies (0)                   Post New Msg
Edit Msg () | Previous | Next


Post# of 154604
(Total Views: 421)
Posted On: 02/14/2025 10:35:26 PM
Posted By: chazzledazzle
Re: Buddyboy20 #150175
Thanks BB, I see the linked study within the article. I’ll have to leave it to more intelligent folks than me to address. But I’ll pop out the link and editors summary.

https://www.science.org/doi/10.1126/science.adl4793

Editor’s summary

Cells modified outside of the body and then reintroduced provide an advantage over most small-molecule therapeutics in that cells can be designed to recognize target molecules in specific tissues and then act locally. Two studies now demonstrate advances in cell engineering for treating human disease (see the Perspective by Davila and Brentjens). Reddy et al. engineered human T cells to make a synthetic receptor that recognized overactive T cells such as those causing autoimmune disease and organ rejection. The most effective modified cells tested were ones in which the synthetic receptor initiated a program causing the production of both an anti-inflammatory cytokine and a receptor that acted as sink for a locally produced proinflammatory cytokine. In mouse models, such cells could be designed with logic programs that protect the desired tissues without detrimental systemic immunosuppression. Simic et al. modified T cells to produce a synthetic receptor that recognized an antigen localized to the extracellular matrix of the brain. The synthetic receptor activated a circuit stimulating the production of chimeric antigen receptors that targeted and killed cancer cells in the brain but not those implanted elsewhere in the mouse. A mouse model of neuroinflammatory brain disease could be treated with cells engineered to locally produce an anti-inflammatory cytokine. —L. Bryan Ray


(1)
(0)




CytoDyn Inc (CYDY) Stock Research Links


  1.  
  2.  


  3.  
  4.  
  5.  






Investors Hangout

Home

Mailbox

Message Boards

Favorites

Whats Hot

Blog

Settings

Privacy Policy

Terms and Conditions

Disclaimer

Contact Us

Whats Hot

Recent Activity

Most Viewed Boards

Most Viewed Posts

Most Posted Boards

Most Followed

Top Boards

Newest Boards

Newest Members

Investors Hangout Message Boards

Welcome To Investors Hangout

Stock Message Boards

American Stock Exchange (AMEX)

NASDAQ Stock Exchange (NASDAQ)

New York Stock Exchange (NYSE)

Penny Stocks - (OTC)

User Boards

The Hangout

Private

Global Markets

Australian Securities Exchange (ASX)

Euronext Amsterdam (AMS)

Euronext Brussels (BRU)

Euronext Lisbon (LIS)

Euronext Paris (PAR)

Foreign Exchange (FOREX)

Hong Kong Stock Exchange (HKEX)

London Stock Exchange (LSE)

Milan Stock Exchange (MLSE)

New Zealand Exchange (NZX)

Singapore Stock Exchange (SGX)

Toronto Stock Exchange (TSX)

Contact Investors Hangout

Email Us

Follow Investors Hangout

Twitter

YouTube

Facebook

Market Data powered by QuoteMedia. Copyright © 2025. Data delayed 15 minutes unless otherwise indicated (view delay times for all exchanges).
Analyst Ratings & Earnings by Zacks. RT=Real-Time, EOD=End of Day, PD=Previous Day. Terms of Use.

© 2025 Copyright Investors Hangout, LLC All Rights Reserved.

Privacy Policy |Do Not Sell My Information | Terms & Conditions | Disclaimer | Help | Contact Us