Investors Hangout Stock Message Boards Logo
  • Mailbox
  • Favorites
  • Boards
    • The Hangout
    • NASDAQ
    • NYSE
    • OTC Markets
    • All Boards
  • Whats Hot!
    • Recent Activity
    • Most Viewed Boards
    • Most Viewed Posts
    • Most Posted
    • Most Followed
    • Top Boards
    • Newest Boards
    • Newest Members
  • Blog
    • Recent Blog Posts
    • Recently Updated
    • News
    • Stocks
    • Crypto
    • Investing
    • Business
    • Markets
    • Economy
    • Real Estate
    • Personal Finance
  • Market Movers
  • Interactive Charts
  • Login - Join Now FREE!
  1. Home ›
  2. Stock Message Boards ›
  3. User Boards ›
  4. Coffee Shoppe Message Board

Reprogramming Cells to Fight Diabetes Feb. 22, 20

Message Board Public Reply | Private Reply | Keep | Replies (0)                   Post New Msg
Edit Msg () | Previous | Next


Post# of 63828
Posted On: 02/24/2013 9:54:31 AM
Avatar
Posted By: PoemStone

Reprogramming Cells to Fight Diabetes


Feb. 22, 2013 — For years researchers have been searching for a way to treat diabetics by reactivating their insulin-producing beta cells, with limited success. The "reprogramming" of related alpha cells into beta cells may one day offer a novel and complementary approach for treating type 2 diabetes. Treating human and mouse cells with compounds that modify cell nuclear material called chromatin induced the expression of beta cell genes in alpha cells, according to a new study that appears online in the Journal of Clinical Investigation .



Treatment of human islets with the histone methyltransferase inhibitor Adox results in co-localization of the beta-cell specific transcription factor PDX1 (white) in a substantial sub-population of glucagon-positive cells (red), indicating partial endocrine cell-fate conversion.





Share This:




39


Related Ads :


  • Cure Diabetes

  • Stem Cells

  • Insulin

  • Hypertension



See Also:

Health & Medicine


  • Diabetes

  • Stem Cells

  • Lymphoma

  • Hypertension

  • Immune System

  • Brain Tumor


Reference


  • Blood sugar

  • Diabetes mellitus type 1

  • Diabetes mellitus type 2

  • Glycogen



"This would be a win-win situation for diabetics -- they would have more insulin-producing beta cells and there would be fewer glucagon-producing alpha cells," says lead author Klaus H. Kaestner, Ph.D., professor of Genetics and member of the Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania. Type 2 diabetics not only lack insulin, but they also produce too much glucagon.


Both type 1 and type 2 diabetes are caused by insufficient numbers of insulin-producing beta cells. In theory, transplantation of healthy beta cells -- for type 1 diabetics in combination with immunosuppression to control autoimmunity -- should halt the disease, yet researchers have not yet been able to generate these cells in the lab at high efficiency, whether from embryonic stem cells or by reprogramming mature cell types.


Alpha cells are another type of endocrine cell in the pancreas. They are responsible for synthesizing and secreting the peptide hormone glucagon, which elevates glucose levels in the blood.


"We treated human islet cells with a chemical that inhibits a protein that puts methyl chemical groups on histones, which -- among many other effects -- leads to removal of some histone modifications that affect gene expression," says Kaestner. "We then found a high frequency of alpha cells that expressed beta-cell markers, and even produced some insulin, after drug treatment.


Histones are protein complexes around which DNA strands are wrapped in a cell's nucleus.


The team discovered that many genes in alpha cells are marked by both activating- and repressing-histone modifications. This included many genes important in beta-cell function. In one state, when a certain gene is turned off, the gene can be readily activated by removing a modification that represses the histone.


"To some extent human alpha cells appear to be in a 'plastic' epigenetic state," explains Kaestner. "We reasoned we might use that to reprogram alpha cells towards the beta-cell phenotype to produce these much-needed insulin-producing cells."


Co-authors are Nuria C. Bramswig, Logan Everett, Jonathan Schug, Chengyang Liu, Yanping Luo, and Ali Naji, all from Penn, and Markus Grompe, Craig Dorrell, and Philip R. Streeter from the Oregon Health & Science University. The Oregon group developed a panel of human endocrine cell type-specific antibodies for cell sorting.



(0)
(0)




Featured stocks: Coffee Shoppe
For conservative debate: "Keeping it Real"
Game Changing stock $SHMP





Investors Hangout

Home

Mailbox

Message Boards

Favorites

Whats Hot

Blog

Settings

Privacy Policy

Terms and Conditions

Disclaimer

Contact Us

Whats Hot

Recent Activity

Most Viewed Boards

Most Viewed Posts

Most Posted Boards

Most Followed

Top Boards

Newest Boards

Newest Members

Investors Hangout Message Boards

Welcome To Investors Hangout

Stock Message Boards

American Stock Exchange (AMEX)

NASDAQ Stock Exchange (NASDAQ)

New York Stock Exchange (NYSE)

Penny Stocks - (OTC)

User Boards

The Hangout

Private

Global Markets

Australian Securities Exchange (ASX)

Euronext Amsterdam (AMS)

Euronext Brussels (BRU)

Euronext Lisbon (LIS)

Euronext Paris (PAR)

Foreign Exchange (FOREX)

Hong Kong Stock Exchange (HKEX)

London Stock Exchange (LSE)

Milan Stock Exchange (MLSE)

New Zealand Exchange (NZX)

Singapore Stock Exchange (SGX)

Toronto Stock Exchange (TSX)

Contact Investors Hangout

Email Us

Follow Investors Hangout

Twitter

YouTube

Facebook

Market Data powered by QuoteMedia. Copyright © 2025. Data delayed 15 minutes unless otherwise indicated (view delay times for all exchanges).
Analyst Ratings & Earnings by Zacks. RT=Real-Time, EOD=End of Day, PD=Previous Day. Terms of Use.

© 2025 Copyright Investors Hangout, LLC All Rights Reserved.

Privacy Policy |Do Not Sell My Information | Terms & Conditions | Disclaimer | Help | Contact Us