Investors Hangout Stock Message Boards Logo
  • Mailbox
  • Favorites
  • Boards
    • The Hangout
    • NASDAQ
    • NYSE
    • OTC Markets
    • All Boards
  • Whats Hot!
    • Recent Activity
    • Most Viewed Boards
    • Most Viewed Posts
    • Most Posted
    • Most Followed
    • Top Boards
    • Newest Boards
    • Newest Members
  • Blog
    • Recent Blog Posts
    • Recently Updated
    • News
    • Stocks
    • Crypto
    • Investing
    • Business
    • Markets
    • Economy
    • Real Estate
    • Personal Finance
  • Market Movers
  • Interactive Charts
  • Login - Join Now FREE!
  1. Home ›
  2. Stock Message Boards ›
  3. User Boards ›
  4. The Bridge Message Board

Global Warming vs. Solar Cooling: The Showdown Beg

Message Board Public Reply | Private Reply | Keep | Replies (0)                   Post New Msg
Edit Msg () | Previous | Next


Post# of 127617
(Total Views: 134)
Posted On: 02/01/2021 11:52:55 AM
Avatar
Posted By: john1234
Re: energy_wave #58597
Global Warming vs. Solar Cooling: The Showdown Begins in 2020
By Mindy Weisberger - Senior Writer February 09, 2018

he sun may be dimming, temporarily. Don't panic; Earth is not going to freeze over. But will the resulting cooling put a dent in the global warming trend?

A periodic solar event called a "grand minimum" could overtake the sun perhaps as soon as 2020 and lasting through 2070, resulting in diminished magnetism, infrequent sunspot production and less ultraviolet (UV) radiation reaching Earth — all bringing a cooler period to the planet that may span 50 years.

The last grand-minimum event — a disruption of the sun's 11-year cycle of variable sunspot activity — happened in the mid-17th century. Known as the Maunder Minimum, it occurred between 1645 and 1715, during a longer span of time when parts of the world became so cold that the period was called the Little Ice Age, which lasted from about 1300 to 1850.

But it's unlikely that we'll see a return to the extreme cold from centuries ago, researchers reported in a new study. Since the Maunder Minimum, global average temperatures have been on the rise, driven by climate change. Though a new decades-long dip in solar radiation could slow global warming somewhat, it wouldn't be by much, the researchers' simulations demonstrated. And by the end of the incoming cooling period, temperatures would have bounced back from the temporary cooldown. [Sun Storms: Incredible Photos of Solar Flares]

Sunspots, which appear as dark patches on the solar surface, form where the sun's magnetic field is unusually strong, and the number of sunspots waxes and wanes in a cycle that lasts about 11 years, fueled by fluctuations in the sun's magnetic field.

But during the late 17th century, the sun's spots all but disappeared. This episode corresponded with a period of exceptional cold in parts of the world, which scientists have explained as being connected to the changes in solar activity.

Sunspot activity was high in 2014 and has been dipping ever since, as the sun moves toward the low end of its 11-year cycle, known as the solar minimum, NASA reported in June 2017. But a pattern of ever-decreasing sunspots over recent solar cycles resembles patterns from the past that preceded grand-minimum events. This similarity hints that another such event may be fast approaching, the researchers reported in the study.

And the scientists have estimated how intense such an event might be, by analyzing close to 20 years of data recording radiation output from stars that follow cycles similar to that of our sun. Solar radiation output typically drops during a normal solar minimum, though not enough to disrupt climate patterns on Earth. However, UV radiation output during a grand minimum could mean activity plummets by an additional 7 percent, the researchers wrote in the study. As a result, air temperatures on Earth's surface would cool by as much as several tenths of a degree Fahrenheit (a change of a half-degree F is the equivalent to about three-tenths of a degree Celsius) on average, according to the study.

The study's findings will help scientists create more accurate climate model simulations, to improve their understanding of the complex interplay between solar activity and climate on Earth, particularly in a warming world, the study's lead author, Dan Lubin, a research physicist with the Scripps Institution of Oceanography at the University of California, San Diego, said in a statement.

"We can therefore have a better idea of how changes in solar UV radiation affect climate change," he said.

The findings were published online Dec. 27, 2017, in The Astrophysical Journal Letters.

Original article on Live Science.

source
https://www.livescience.com/61716-sun-cooling...rming.html


(0)
(0)








Investors Hangout

Home

Mailbox

Message Boards

Favorites

Whats Hot

Blog

Settings

Privacy Policy

Terms and Conditions

Disclaimer

Contact Us

Whats Hot

Recent Activity

Most Viewed Boards

Most Viewed Posts

Most Posted Boards

Most Followed

Top Boards

Newest Boards

Newest Members

Investors Hangout Message Boards

Welcome To Investors Hangout

Stock Message Boards

American Stock Exchange (AMEX)

NASDAQ Stock Exchange (NASDAQ)

New York Stock Exchange (NYSE)

Penny Stocks - (OTC)

User Boards

The Hangout

Private

Global Markets

Australian Securities Exchange (ASX)

Euronext Amsterdam (AMS)

Euronext Brussels (BRU)

Euronext Lisbon (LIS)

Euronext Paris (PAR)

Foreign Exchange (FOREX)

Hong Kong Stock Exchange (HKEX)

London Stock Exchange (LSE)

Milan Stock Exchange (MLSE)

New Zealand Exchange (NZX)

Singapore Stock Exchange (SGX)

Toronto Stock Exchange (TSX)

Contact Investors Hangout

Email Us

Follow Investors Hangout

Twitter

YouTube

Facebook

Market Data powered by QuoteMedia. Copyright © 2025. Data delayed 15 minutes unless otherwise indicated (view delay times for all exchanges).
Analyst Ratings & Earnings by Zacks. RT=Real-Time, EOD=End of Day, PD=Previous Day. Terms of Use.

© 2025 Copyright Investors Hangout, LLC All Rights Reserved.

Privacy Policy |Do Not Sell My Information | Terms & Conditions | Disclaimer | Help | Contact Us