Investors Hangout Stock Message Boards Logo
  • Mailbox
  • Favorites
  • Boards
    • The Hangout
    • NASDAQ
    • NYSE
    • OTC Markets
    • All Boards
  • Whats Hot!
    • Recent Activity
    • Most Viewed Boards
    • Most Viewed Posts
    • Most Posted
    • Most Followed
    • Top Boards
    • Newest Boards
    • Newest Members
  • Blog
    • Recent Blog Posts
    • Recently Updated
    • News
    • Stocks
    • Crypto
    • Investing
    • Business
    • Markets
    • Economy
    • Real Estate
    • Personal Finance
  • Market Movers
  • Interactive Charts
  • Login - Join Now FREE!
  1. Home ›
  2. Stock Message Boards ›
  3. User Boards ›
  4. Coffee Shoppe Message Board

Sniffing Immune Cells: Immune Cells On the Move Ar

Message Board Public Reply | Private Reply | Keep | Replies (0)                   Post New Msg
Edit Msg () | Previous | Next


Post# of 63831
Posted On: 01/18/2013 7:07:46 AM
Avatar
Posted By: PoemStone

Sniffing Immune Cells: Immune Cells On the Move Are Guided by Touch and Smell


Jan. 17, 2013 — Research at IST Austria shows how immune cells navigate through the skin by sensing graded patterns of immobilized directional cues.



Microscopic image of blood vessels, lymphatic vessels and Chemokin CCL21.





Share This:




4


Related Ads :


  • Stem Cells

  • Biology

  • Biotechnology

  • Lymphoma



See Also:

Health & Medicine


  • Immune System

  • Stem Cells

  • Lymphoma


Plants & Animals


  • Biology

  • Biotechnology

  • Molecular Biology


Reference


  • Natural killer cell

  • Human physiology

  • Inflammation

  • Biological tissue



A research paper by the group of Michael Sixt, Assistant Professor at the Institute of Science and Technology Austria (IST Austria), published January 17 in Science provides new insights into how immune cells find their way through tissues. The findings provide the first evidence for directed cell migration along concentration gradients of chemical cues immobilized in tissues, a concept that has long been assumed but never experimentally proven.


Immune cells constantly patrol our body to check for foreign invaders, such as bacteria or viruses. To do so they leave the blood stream, actively crawl through tissues and finally re-enter the circulation via lymphatic vessels. Research from the laboratory of Michael Sixt elucidates how the cells are guided through tissues like the skin.


It is thought that cells either sense their environment by 'touching' or ´smelling´: They adhere to structural molecules like connective tissue proteins using adhesion receptors. Or they 'smell' soluble signal molecules with specialized surface receptors. Especially solutes are thought to act as directional cues as they tend to be more concentrated closer to the production source. Like one can find a flower by following its scent, cells are able to follow such soluble gradients. Both principles, touching and smelling, have been demonstrated to work in cell culture experiments. But how cell guidance functions in real tissues is still not known.


According to the new study, immune cells in mouse skin use a mixed strategy. They follow gradients of guidance cues, which are not soluble but immobilized to sugar molecules in the connective tissue. In their newly published work, the scientists around Michael Sixt visualized both the immune cells, in this case dendritic cells, and the cue, the chemokine CCL21, and recorded movies of how the cells navigate through living tissues. The researchers found that the chemokine is exclusively produced by the lymphatic vessel. From there it distributes into the surrounding tissue, forming a concentration gradient.


In collaboration with Robert Hauschild and Tobias Bollenbach, two physicists at IST Austria, detailed quantitative maps of the chemokine distribution were drawn and compared with the migratory routes of the cells. Observation and quantitative prediction matched well: a cell can find the next lymphatic vessel by comparing the concentration of chemokine across its surface and then crawling towards the higher concentration. For this to work the cell only needs to be of a certain size because the gradients are noisy. A small cell would easily get trapped on a local concentration peak as it cannot "see" that there is an even higher peak nearby. To prove their concept, the scientists outcompeted the chemokine gradients in the tissue by applying excess chemokine from the outside. They found that this confuses the cells on their way to the lymphatic vessel. When they released the anchoring of the chemokine to the tissue, cells also got confused, demonstrating that the gradients are not soluble but bound to the tissue.



(0)
(0)




Featured stocks: Coffee Shoppe
For conservative debate: "Keeping it Real"
Game Changing stock $SHMP





Investors Hangout

Home

Mailbox

Message Boards

Favorites

Whats Hot

Blog

Settings

Privacy Policy

Terms and Conditions

Disclaimer

Contact Us

Whats Hot

Recent Activity

Most Viewed Boards

Most Viewed Posts

Most Posted Boards

Most Followed

Top Boards

Newest Boards

Newest Members

Investors Hangout Message Boards

Welcome To Investors Hangout

Stock Message Boards

American Stock Exchange (AMEX)

NASDAQ Stock Exchange (NASDAQ)

New York Stock Exchange (NYSE)

Penny Stocks - (OTC)

User Boards

The Hangout

Private

Global Markets

Australian Securities Exchange (ASX)

Euronext Amsterdam (AMS)

Euronext Brussels (BRU)

Euronext Lisbon (LIS)

Euronext Paris (PAR)

Foreign Exchange (FOREX)

Hong Kong Stock Exchange (HKEX)

London Stock Exchange (LSE)

Milan Stock Exchange (MLSE)

New Zealand Exchange (NZX)

Singapore Stock Exchange (SGX)

Toronto Stock Exchange (TSX)

Contact Investors Hangout

Email Us

Follow Investors Hangout

Twitter

YouTube

Facebook

Market Data powered by QuoteMedia. Copyright © 2025. Data delayed 15 minutes unless otherwise indicated (view delay times for all exchanges).
Analyst Ratings & Earnings by Zacks. RT=Real-Time, EOD=End of Day, PD=Previous Day. Terms of Use.

© 2025 Copyright Investors Hangout, LLC All Rights Reserved.

Privacy Policy |Do Not Sell My Information | Terms & Conditions | Disclaimer | Help | Contact Us