The article is very interesting. It is gonna get r
Post# of 27037
" I'm trying to investigate ways to understand the long-term consequences of technology in the world and place it into some position along with other grand things like biological nature, big history, the physics of the cosmos, and the future. It's a very ambitious project and, surprisingly, there isn't really much thinking about technology in terms of its sphere of influence in a way that might be useful to thinking about how to evaluate what we make.
Technology is not merely a human-derived entity. The roots of technology go all the way back to the Big Bang. It's part of the same line that I call extropic systems that extend back through living systems, self-regulating planets, auto-coalescing star systems and so on. Extropic systems might also be called near-equilibrium sustainable systems. They run in the opposite direction from entropic systems. These are complex, sustainable systems that always teeter on the edge of falling over, but keep going. Over cosmic time, a type will gradually build up more complexity sustained on the edge of collapse. We see extropic systems in galaxy formation, planet formation, life formation, intelligence formation, and I believe, in technology formation. "The scientific method itself is not constant. It is evolving. What we call the scientific method has been changed by technology from the very beginning. The necessity of peer review, and repeatability of experiments, for example were types of thinking that had to be invented and required technologies like print to make possible. A scientist from 400 years ago would not recognize the scientific method as it is practiced today because a lot of the elements of research that we now consider essential to the scientific method weren't invented until very recently: for instance, placebos, statistical sampling, double blind experiments. All these things are new, some of them invented in just the last 50 years.
New technologies being invented today, such as social software, distributed instrumentation, and new ways of seeing will all transform the scientific method of the future. It is very likely the scientific method will change far more in the next 50 years than it has in its first 400 years of its existence.