Investors Hangout Stock Message Boards Logo
  • Mailbox
  • Favorites
  • Boards
    • The Hangout
    • NASDAQ
    • NYSE
    • OTC Markets
    • All Boards
  • Whats Hot!
    • Recent Activity
    • Most Viewed Boards
    • Most Viewed Posts
    • Most Posted
    • Most Followed
    • Top Boards
    • Newest Boards
    • Newest Members
  • Blog
    • Recent Blog Posts
    • Recently Updated
    • News
    • Stocks
    • Crypto
    • Investing
    • Business
    • Markets
    • Economy
    • Real Estate
    • Personal Finance
  • Market Movers
  • Interactive Charts
  • Login - Join Now FREE!
  1. Home ›
  2. Stock Message Boards ›
  3. User Boards ›
  4. Coffee Shoppe Message Board

How to Treat Heat Like Light: New Approach Using

Message Board Public Reply | Private Reply | Keep | Replies (0)                   Post New Msg
Edit Msg () | Previous | Next


Post# of 63835
Posted On: 01/12/2013 10:05:04 AM
Avatar
Posted By: PoemStone

How to Treat Heat Like Light: New Approach Using Nanoparticle Alloys Allows Heat to Be Focused or Reflected Just Like Electromagnetic Waves


Jan. 11, 2013 — An MIT researcher has developed a technique that provides a new way of manipulating heat, allowing it to be controlled much as light waves can be manipulated by lenses and mirrors.



Thermal lattices.





Share This:




50


Related Ads :


  • Heat and Air

  • Thermodynamics

  • Nanotechnology

  • Solar Light



See Also:

Matter & Energy


  • Thermodynamics

  • Materials Science

  • Optics

  • Acoustics

  • Civil Engineering

  • Nanotechnology


Reference


  • Acoustics

  • Electromagnetic spectrum

  • Speed of sound

  • Heat pump



The approach relies on engineered materials consisting of nanostructured semiconductor alloy crystals. Heat is a vibration of matter -- technically, a vibration of the atomic lattice of a material -- just as sound is. Such vibrations can also be thought of as a stream of phonons -- a kind of "virtual particle" that is analogous to the photons that carry light. The new approach is similar to recently developed photonic crystals that can control the passage of light, and phononic crystals that can do the same for sound.


The spacing of tiny gaps in these materials is tuned to match the wavelength of the heat phonons, explains Martin Maldovan, a research scientist in MIT's Department of Materials Science and Engineering and author of a paper on the new findings published Jan. 11 in the journal Physical Review Letters .


"It's a completely new way to manipulate heat," Maldovan says. Heat differs from sound, he explains, in the frequency of its vibrations: Sound waves consist of lower frequencies (up to the kilohertz range, or thousands of vibrations per second), while heat arises from higher frequencies (in the terahertz range, or trillions of vibrations per second).


In order to apply the techniques already developed to manipulate sound, Maldovan's first step was to reduce the frequency of the heat phonons, bringing it closer to the sound range. He describes this as "hypersonic heat."


"Phonons for sound can travel for kilometers," Maldovan says -- which is why it's possible to hear noises from very far away. "But phonons of heat only travel for nanometers [billionths of a meter]. That's why you couldn't hear heat even with ears responding to terahertz frequencies."


Heat also spans a wide range of frequencies, he says, while sound spans a single frequency. So, to address that, Maldovan says, "the first thing we did is reduce the number of frequencies of heat, and we made them lower," bringing these frequencies down into the boundary zone between heat and sound. Making alloys of silicon that incorporate nanoparticles of germanium in a particular size range accomplished this lowering of frequency, he says.


Reducing the range of frequencies was also accomplished by making a series of thin films of the material, so that scattering of phonons would take place at the boundaries. This ends up concentrating most of the heat phonons within a relatively narrow "window" of frequencies.


Following the application of these techniques, more than 40 percent of the total heat flow is concentrated within a hypersonic range of 100 to 300 gigahertz, and most of the phonons align in a narrow beam, instead of moving in every direction.


As a result, this beam of narrow-frequency phonons can be manipulated using phononic crystals similar to those developed to control sound phonons. Because these crystals are now being used to control heat instead, Maldovan refers to them as "thermocrystals," a new category of materials.


These thermocrystals might have a wide range of applications, he suggests, including in improved thermoelectric devices, which convert differences of temperature into electricity. Such devices transmit electricity freely while strictly controlling the flow of heat -- tasks that the thermocrystals could accomplish very effectively, Maldovan says.


Most conventional materials allow heat to travel in all directions, like ripples expanding outward from a pebble dropped in a pond; thermocrystals could instead produce the equivalent of those ripples only moving out in a single direction, Maldovan says. The crystals could also be used to create thermal diodes: materials in which heat can pass in one direction, but not in the reverse direction. Such a one-way heat flow could be useful in energy-efficient buildings in hot and cold climates.


Other variations of the material could be used to focus heat -- much like focusing light with a lens -- to concentrate it in a small area. Another intriguing possibility is thermal cloaking, Maldovan says: materials that prevent detection of heat, just as recently developed metamaterials can create "invisibility cloaks" to shield objects from detection by visible light or microwaves.


Rama Venkatasubramanian, senior research director at the Center for Solid State Energetics at RTI International in North Carolina, says this is "an interesting approach to control the various frequencies of the phonon spectra that conduct heat in a solid-state material."


The modeling used to develop this new system "needs to be further developed," Venkatasubramanian adds. "The theory of what wavelengths of phonons, and at what temperatures, contribute to how much heat transport is a complex problem even in simpler materials, let alone nanostructured materials, and these will have to be factored in -- so this paper will trigger more interest and study in that direction."



(0)
(0)




Featured stocks: Coffee Shoppe
For conservative debate: "Keeping it Real"
Game Changing stock $SHMP





Investors Hangout

Home

Mailbox

Message Boards

Favorites

Whats Hot

Blog

Settings

Privacy Policy

Terms and Conditions

Disclaimer

Contact Us

Whats Hot

Recent Activity

Most Viewed Boards

Most Viewed Posts

Most Posted Boards

Most Followed

Top Boards

Newest Boards

Newest Members

Investors Hangout Message Boards

Welcome To Investors Hangout

Stock Message Boards

American Stock Exchange (AMEX)

NASDAQ Stock Exchange (NASDAQ)

New York Stock Exchange (NYSE)

Penny Stocks - (OTC)

User Boards

The Hangout

Private

Global Markets

Australian Securities Exchange (ASX)

Euronext Amsterdam (AMS)

Euronext Brussels (BRU)

Euronext Lisbon (LIS)

Euronext Paris (PAR)

Foreign Exchange (FOREX)

Hong Kong Stock Exchange (HKEX)

London Stock Exchange (LSE)

Milan Stock Exchange (MLSE)

New Zealand Exchange (NZX)

Singapore Stock Exchange (SGX)

Toronto Stock Exchange (TSX)

Contact Investors Hangout

Email Us

Follow Investors Hangout

Twitter

YouTube

Facebook

Market Data powered by QuoteMedia. Copyright © 2025. Data delayed 15 minutes unless otherwise indicated (view delay times for all exchanges).
Analyst Ratings & Earnings by Zacks. RT=Real-Time, EOD=End of Day, PD=Previous Day. Terms of Use.

© 2025 Copyright Investors Hangout, LLC All Rights Reserved.

Privacy Policy |Do Not Sell My Information | Terms & Conditions | Disclaimer | Help | Contact Us