Investors Hangout Stock Message Boards Logo
  • Mailbox
  • Favorites
  • Boards
    • The Hangout
    • NASDAQ
    • NYSE
    • OTC Markets
    • All Boards
  • Whats Hot!
    • Recent Activity
    • Most Viewed Boards
    • Most Viewed Posts
    • Most Posted
    • Most Followed
    • Top Boards
    • Newest Boards
    • Newest Members
  • Blog
    • Recent Blog Posts
    • Recently Updated
    • News
    • Stocks
    • Crypto
    • Investing
    • Business
    • Markets
    • Economy
    • Real Estate
    • Personal Finance
  • Market Movers
  • Interactive Charts
  • Login - Join Now FREE!
  1. Home ›
  2. Stock Message Boards ›
  3. Stock Boards ›
  4. Quantum Materials Corp. (QTMM) Message Board

Integrated Quantum Optical Circuits Soon a Reality

Message Board Public Reply | Private Reply | Keep | Replies (0)                   Post New Msg
Edit Msg () | Previous | Next


Post# of 22467
(Total Views: 1100)
Posted On: 09/06/2017 8:28:28 AM
Posted By: jamis
Integrated Quantum Optical Circuits Soon a Reality

Quote:
A Swedish research group in quantum nano photonics has developed a new method that represents a significant step toward enabling optical quantum information processing on a chip.

The group, from KTH Royal Institute of Technology, has managed to create the building blocks of such a system by integrating artificial atoms (quantum dots) in silicon-based photonic chips. They have generated and filtered single photons on-chip without the use of any external components. The results are presented in an article in the scientific journal Nature Communications.

Quantum computers and networks are expected to outperform today's classical computers and networks, which encode information in binary bits. Rather than bits consisting of ones and zeros, quantum bits can simultaneously take a superposition of both values, which means that they can process significantly higher amounts of information with fewer calculation steps. Potential applications include energy efficient computation, sensing and secure communication.

However, there are challenges to overcome in order to be able to develop effective integrated quantum circuits. The Quantum Nano Photonics group at KTH solves these challenges in the work presented in Nature Communications, said KTH researcher Ali Elshaari, a co-author of the study.

In the past, it has been extremely difficult to isolate quantum dots and to place them in a useful circuit, as they are randomly grown without having high control over their properties and their position in the circuit. Additionally, it is difficult to generate single photons on the same chip without using external filtering to remove all unwanted signals from the quantum emitters and background light, Elshaari said.

The research team used a novel nanomanipulation technique to transfer selected and pre-characterized single photon emitters in nanowires, on a silicon chip. The team then built an integrated optical circuit to filter single photons and multiplex them. The latter means using multiple quantum dots to generate light in various "colors" that can be used to encode different information on the same chip , he said.

"In order to achieve a functioning integrated quantum circuit, one must build its components deterministically," Elshaari said. "That means every component of the circuit is carefully designed and optimized to perform a specific task. There is no room for randomness or chance when it comes to the characteristics of the source or its location in the optical circuit, unlike previous approaches."

One of the new achievements of the research team's work is that they have created a hybrid approach that combines two semiconductor technologies, III-V technology in the form of nanowire-based quantum emitters, and silicon technology in the form of the integrated optical circuit, he said.

"Hybrid integration with nanowires has not been done before. The results are a very important step toward enabling quantum information processing on a chip."



https://www.pddnet.com/news/2017/09/integrate...on-reality

I'm just wondering how much study has been done in the use of tetrapod qunatum dots in this application since they can be designed to produce multiple colors of light from a single quantum dot.


(0)
(0)




Quantum Materials Corp. (QTMM) Stock Research Links


  1.  
  2.  


  3.  
  4.  
  5.  






Investors Hangout

Home

Mailbox

Message Boards

Favorites

Whats Hot

Blog

Settings

Privacy Policy

Terms and Conditions

Disclaimer

Contact Us

Whats Hot

Recent Activity

Most Viewed Boards

Most Viewed Posts

Most Posted Boards

Most Followed

Top Boards

Newest Boards

Newest Members

Investors Hangout Message Boards

Welcome To Investors Hangout

Stock Message Boards

American Stock Exchange (AMEX)

NASDAQ Stock Exchange (NASDAQ)

New York Stock Exchange (NYSE)

Penny Stocks - (OTC)

User Boards

The Hangout

Private

Global Markets

Australian Securities Exchange (ASX)

Euronext Amsterdam (AMS)

Euronext Brussels (BRU)

Euronext Lisbon (LIS)

Euronext Paris (PAR)

Foreign Exchange (FOREX)

Hong Kong Stock Exchange (HKEX)

London Stock Exchange (LSE)

Milan Stock Exchange (MLSE)

New Zealand Exchange (NZX)

Singapore Stock Exchange (SGX)

Toronto Stock Exchange (TSX)

Contact Investors Hangout

Email Us

Follow Investors Hangout

Twitter

YouTube

Facebook

Market Data powered by QuoteMedia. Copyright © 2025. Data delayed 15 minutes unless otherwise indicated (view delay times for all exchanges).
Analyst Ratings & Earnings by Zacks. RT=Real-Time, EOD=End of Day, PD=Previous Day. Terms of Use.

© 2025 Copyright Investors Hangout, LLC All Rights Reserved.

Privacy Policy |Do Not Sell My Information | Terms & Conditions | Disclaimer | Help | Contact Us