Investors Hangout Stock Message Boards Logo
  • Mailbox
  • Favorites
  • Boards
    • The Hangout
    • NASDAQ
    • NYSE
    • OTC Markets
    • All Boards
  • Whats Hot!
    • Recent Activity
    • Most Viewed Boards
    • Most Viewed Posts
    • Most Posted
    • Most Followed
    • Top Boards
    • Newest Boards
    • Newest Members
  • Blog
    • Recent Blog Posts
    • Recently Updated
    • News
    • Stocks
    • Crypto
    • Investing
    • Business
    • Markets
    • Economy
    • Real Estate
    • Personal Finance
  • Market Movers
  • Interactive Charts
  • Login - Join Now FREE!
  1. Home ›
  2. Stock Message Boards ›
  3. Stock Boards ›
  4. Quantum Materials Corp. (QTMM) Message Board

Resolving ultrafast exciton migration in organic s

Message Board Public Reply | Private Reply | Keep | Replies (1)                   Post New Msg
Edit Msg () | Previous | Next


Post# of 22467
(Total Views: 556)
Posted On: 06/27/2017 1:28:11 PM
Posted By: dockzef
Resolving ultrafast exciton migration in organic solids at the nanoscale

Samuel B. Penwell, Lucas D. S. Ginsberg, Rodrigo Noriega, Naomi S. Ginsberg
(Submitted on 26 Jun 2017)

The effectiveness of molecular-based light harvesting relies on transport of optical excitations, excitons, to charg-transfer sites. Measuring exciton migration has, however, been challenging because of the mismatch between nanoscale migration lengths and the diffraction limit. In organic semiconductors, common bulk methods employ a series of films terminated at quenching substrates, altering the spatioenergetic landscape for migration. Here we instead define quenching boundaries all-optically with sub-diffraction resolution, thus characterizing spatiotemporal exciton migration on its native nanometer and picosecond scales without disturbing morphology. By transforming stimulated emission depletion microscopy into a time-resolved ultrafast approach, we measure a 16-nm migration length in CN-PPV conjugated polymer films. Combining these experiments with Monte Carlo exciton hopping simulations shows that migration in CN-PPV films is essentially diffusive because intrinsic chromophore energetic disorder is comparable to inhomogeneous broadening among chromophores. This framework also illustrates general trends across materials. Our new approach's sub-diffraction resolution will enable previously unattainable correlations of local material structure to the nature of exciton migration, applicable not only to photovoltaic or display-destined organic semiconductors but also to explaining the quintessential exciton migration exhibited in photosynthesis.

https://arxiv.org/abs/1706.08460


(0)
(0)




Quantum Materials Corp. (QTMM) Stock Research Links


  1.  
  2.  


  3.  
  4.  
  5.  






Investors Hangout

Home

Mailbox

Message Boards

Favorites

Whats Hot

Blog

Settings

Privacy Policy

Terms and Conditions

Disclaimer

Contact Us

Whats Hot

Recent Activity

Most Viewed Boards

Most Viewed Posts

Most Posted Boards

Most Followed

Top Boards

Newest Boards

Newest Members

Investors Hangout Message Boards

Welcome To Investors Hangout

Stock Message Boards

American Stock Exchange (AMEX)

NASDAQ Stock Exchange (NASDAQ)

New York Stock Exchange (NYSE)

Penny Stocks - (OTC)

User Boards

The Hangout

Private

Global Markets

Australian Securities Exchange (ASX)

Euronext Amsterdam (AMS)

Euronext Brussels (BRU)

Euronext Lisbon (LIS)

Euronext Paris (PAR)

Foreign Exchange (FOREX)

Hong Kong Stock Exchange (HKEX)

London Stock Exchange (LSE)

Milan Stock Exchange (MLSE)

New Zealand Exchange (NZX)

Singapore Stock Exchange (SGX)

Toronto Stock Exchange (TSX)

Contact Investors Hangout

Email Us

Follow Investors Hangout

Twitter

YouTube

Facebook

Market Data powered by QuoteMedia. Copyright © 2025. Data delayed 15 minutes unless otherwise indicated (view delay times for all exchanges).
Analyst Ratings & Earnings by Zacks. RT=Real-Time, EOD=End of Day, PD=Previous Day. Terms of Use.

© 2025 Copyright Investors Hangout, LLC All Rights Reserved.

Privacy Policy |Do Not Sell My Information | Terms & Conditions | Disclaimer | Help | Contact Us