Investors Hangout Stock Message Boards Logo
  • Mailbox
  • Favorites
  • Boards
    • The Hangout
    • NASDAQ
    • NYSE
    • OTC Markets
    • All Boards
  • Whats Hot!
    • Recent Activity
    • Most Viewed Boards
    • Most Viewed Posts
    • Most Posted
    • Most Followed
    • Top Boards
    • Newest Boards
    • Newest Members
  • Blog
    • Recent Blog Posts
    • Recently Updated
    • News
    • Stocks
    • Crypto
    • Investing
    • Business
    • Markets
    • Economy
    • Real Estate
    • Personal Finance
  • Market Movers
  • Interactive Charts
  • Login - Join Now FREE!
  1. Home ›
  2. Stock Message Boards ›
  3. Stock Boards ›
  4. Quantum Materials Corp. (QTMM) Message Board

Transfer of Vertical Graphene Nanosheets onto Flex

Message Board Public Reply | Private Reply | Keep | Replies (0)                   Post New Msg
Edit Msg () | Previous | Next


Post# of 22465
(Total Views: 390)
Posted On: 04/12/2017 10:26:21 AM
Posted By: dockzef
Transfer of Vertical Graphene Nanosheets onto Flexible Substrates towards Supercapacitor Application

Gopinath Sahoo, Subrata Ghosh, S. R. Polaki, Tom Mathews, M. Kamruddin
(Submitted on 11 Apr 2017)

Vertical graphene nanosheets (VGNs) are the material of choice for next-generation electronic device applications. The growing demand for flexible devices in electronic industry brings in restriction on growth temperature of the material of interest. However, VGNs with better structural quality is usually achieved at high growth temperatures. The difficulty associated with the direct growth on flexible substrates can overcome by adopting an effective strategy of transferring the well grown VGNs onto arbitrary flexible substrates through soft chemistry route. Hence, we demonstrated a simple, inexpensive and scalable technique for the transfer of VGNs onto arbitrary substrates without disrupting its morphology and structural properties. After transfer, the morphology, chemical structure and electronic properties are analyzed by scanning electron microscopy, Raman spectroscopy and four probe resistive methods, respectively. Associated characterization investigation indicates the retention of morphological, structural and electrical properties of transferred VGNs compared to as-grown one. Furthermore the storage capacity of the VGNs transferred onto flexible substrates is also examined. A very lower sheet resistance of 0.67 kOhm/sq. and excellent supercapacitance of 158 micro-Farrad/cm2 with 91.4% retention after 2000 cycles confirms the great prospective of this damage-free transfer approach of VGNs for flexible nanoelectronic device applications

https://arxiv.org/abs/1704.03227


(0)
(0)




Quantum Materials Corp. (QTMM) Stock Research Links


  1.  
  2.  


  3.  
  4.  
  5.  






Investors Hangout

Home

Mailbox

Message Boards

Favorites

Whats Hot

Blog

Settings

Privacy Policy

Terms and Conditions

Disclaimer

Contact Us

Whats Hot

Recent Activity

Most Viewed Boards

Most Viewed Posts

Most Posted Boards

Most Followed

Top Boards

Newest Boards

Newest Members

Investors Hangout Message Boards

Welcome To Investors Hangout

Stock Message Boards

American Stock Exchange (AMEX)

NASDAQ Stock Exchange (NASDAQ)

New York Stock Exchange (NYSE)

Penny Stocks - (OTC)

User Boards

The Hangout

Private

Global Markets

Australian Securities Exchange (ASX)

Euronext Amsterdam (AMS)

Euronext Brussels (BRU)

Euronext Lisbon (LIS)

Euronext Paris (PAR)

Foreign Exchange (FOREX)

Hong Kong Stock Exchange (HKEX)

London Stock Exchange (LSE)

Milan Stock Exchange (MLSE)

New Zealand Exchange (NZX)

Singapore Stock Exchange (SGX)

Toronto Stock Exchange (TSX)

Contact Investors Hangout

Email Us

Follow Investors Hangout

Twitter

YouTube

Facebook

Market Data powered by QuoteMedia. Copyright © 2025. Data delayed 15 minutes unless otherwise indicated (view delay times for all exchanges).
Analyst Ratings & Earnings by Zacks. RT=Real-Time, EOD=End of Day, PD=Previous Day. Terms of Use.

© 2025 Copyright Investors Hangout, LLC All Rights Reserved.

Privacy Policy |Do Not Sell My Information | Terms & Conditions | Disclaimer | Help | Contact Us