Investors Hangout Stock Message Boards Logo
  • Mailbox
  • Favorites
  • Boards
    • The Hangout
    • NASDAQ
    • NYSE
    • OTC Markets
    • All Boards
  • Whats Hot!
    • Recent Activity
    • Most Viewed Boards
    • Most Viewed Posts
    • Most Posted
    • Most Followed
    • Top Boards
    • Newest Boards
    • Newest Members
  • Blog
    • Recent Blog Posts
    • Recently Updated
    • News
    • Stocks
    • Crypto
    • Investing
    • Business
    • Markets
    • Economy
    • Real Estate
    • Personal Finance
  • Market Movers
  • Interactive Charts
  • Login - Join Now FREE!
  1. Home ›
  2. Stock Message Boards ›
  3. Stock Boards ›
  4. Quantum Materials Corp. (QTMM) Message Board

Superconductivity and quantum criticality in heavy

Message Board Public Reply | Private Reply | Keep | Replies (0)                   Post New Msg
Edit Msg () | Previous | Next


Post# of 22465
(Total Views: 336)
Posted On: 02/23/2017 2:59:57 PM
Posted By: dockzef
Superconductivity and quantum criticality in heavy fermions CeIrSi3
and CeRhSi3

J. F. Landaeta, D. Subero, D. Catalá, S. V. Taylor, N. Kimura, R. Settai, Y. Ōnuki, M. Sigrist, I. Bonalde
(Submitted on 22 Feb 2017)

Superconductivity and magnetism are mutually exclusive in most alloys and elements, so it is striking that superconductivity emerges around a magnetic quantum critical point (QCP) in many strongly correlated electron systems (SCES). In the latter case superconductivity is believed to be unconventional and directly influenced by the QCP. However, experimentally unconventional superconductivity has neither been established nor directly been linked to any mechanism of the QCP. Here we report measurements in the heavy-fermion superconductors CeIrSi3
and CeRhSi3
. The measurements were performed with a newly developed system, first of its kind, that allows high-resolution studies of the superconducting gap structure under pressure. Superconductivity in CeIrSi3
shows a change from an excitation spectrum with line-nodal gap to one which is entirely gapful when pressure is close but not yet at the QCP. In contrast, CeRhSi3
does not possess an obvious pressure-tuned QCP and the superconducting phase remains for all accessible pressures with a nodal gap. Combining both results suggests that unconventional behaviours may be connected with the coexisting antiferromagnetic order. This study provides a new viewpoint on the interplay of superconductivity and magnetism in SCES.

https://arxiv.org/abs/1702.06812


(0)
(0)




Quantum Materials Corp. (QTMM) Stock Research Links


  1.  
  2.  


  3.  
  4.  
  5.  






Investors Hangout

Home

Mailbox

Message Boards

Favorites

Whats Hot

Blog

Settings

Privacy Policy

Terms and Conditions

Disclaimer

Contact Us

Whats Hot

Recent Activity

Most Viewed Boards

Most Viewed Posts

Most Posted Boards

Most Followed

Top Boards

Newest Boards

Newest Members

Investors Hangout Message Boards

Welcome To Investors Hangout

Stock Message Boards

American Stock Exchange (AMEX)

NASDAQ Stock Exchange (NASDAQ)

New York Stock Exchange (NYSE)

Penny Stocks - (OTC)

User Boards

The Hangout

Private

Global Markets

Australian Securities Exchange (ASX)

Euronext Amsterdam (AMS)

Euronext Brussels (BRU)

Euronext Lisbon (LIS)

Euronext Paris (PAR)

Foreign Exchange (FOREX)

Hong Kong Stock Exchange (HKEX)

London Stock Exchange (LSE)

Milan Stock Exchange (MLSE)

New Zealand Exchange (NZX)

Singapore Stock Exchange (SGX)

Toronto Stock Exchange (TSX)

Contact Investors Hangout

Email Us

Follow Investors Hangout

Twitter

YouTube

Facebook

Market Data powered by QuoteMedia. Copyright © 2025. Data delayed 15 minutes unless otherwise indicated (view delay times for all exchanges).
Analyst Ratings & Earnings by Zacks. RT=Real-Time, EOD=End of Day, PD=Previous Day. Terms of Use.

© 2025 Copyright Investors Hangout, LLC All Rights Reserved.

Privacy Policy |Do Not Sell My Information | Terms & Conditions | Disclaimer | Help | Contact Us