http://cen.acs.org/articles/94/i18/future-low-cost
Post# of 22456
In quantum dot solar cells, nanocrystals of semiconducting metal chalcogenides—including CdS, CdSe, PbS, and PbSe—and other materials function as the light-absorbing material in the device. As with other emerging photovoltaic technologies, quantum dot cells can be prepared via low-cost solution-phase chemistry methods and are amenable to high-speed printing techniques.
Many academic research groups have shown this technology holds promise. But relatively few companies are betting that they have the combination of unique materials chemistry and manufacturing know-how needed to provide a competitive edge in this area. One exception is Solterra Renewable Technologies, in San Marcos, Texas.
Solterra is a subsidiary of Quantum Materials, a manufacturer of nanocrystals and other nanoscale materials. Solterra’s cells are designed to exploit Quantum’s low-cost synthesis methods for making four-armed quantum dots. The unique shape of these crystals reduces the probability of electron-hole recombination, which leads to greater charge transport and photovoltaic efficiencies compared with spherical quantum dots of the same material.
According to Vice President David C. Doderer, Solterra aims to produce a prototype quantum dot cell within one year and demonstrate a multicell module within two years. The firm is working to improve its roll-to-roll printing technique and other manufacturing procedures, he says.
In a development that may advance quantum dot photovoltaics, researchers at East China University of Science & Technology just reported that their Zn-Cu-In-Se quantum dot cell yielded an efficiency of 11.6%. That value tops the current U.S. National Renewable Energy Laboratory-certified quantum dot record holder by 0.3%