Distinct scaling behaviors of giant electrocaloric
Post# of 22456
Yuping Shi, Limin Huang, Ai Kah Soh, George J. Weng, Shuangyi Liu andS imon A.T. Redfern
(Submitted on 26 Oct 2016)
Electrocaloric (EC) materials show promise in eco-friendly solid-state refrigeration and integrable on-chip thermal management. While direct measurement of EC thin-films still remains challenging, a generic theoretical framework for quantifying the cooling properties of rich EC materials including normal-, relaxor-, organic- and anti-ferroelectrics is imperative for exploiting new flexible and room-temperature cooling alternatives. Here, we present a versatile theory that combines Master equation with Maxwell relations and analytically relates the macroscopic cooling responses in EC materials with the intrinsic diffuseness of phase transitions and correlation characteristics. Under increased electric fields, both EC entropy and adiabatic temperature changes increase quadratically initially, followed by further linear growth and eventual gradual saturation. The upper bound of entropy change (dS_max) is limited by distinct correlation volumes (V_cr) and transition diffuseness. The linearity between V_cr and the transition diffuseness is emphasized, while dS_max=300 kJ/(K.m3) is obtained for Pb0.8Ba0.2ZrO3. The dS_max in antiferroelectric Pb0.95Zr0.05TiO3, Pb0.8Ba0.2ZrO3 and polymeric ferroelectrics scales proportionally with V_cr^(-2.2), owing to the one-dimensional structural constraint on lattice-scale depolarization dynamics; whereas dS_max in relaxor and normal ferroelectrics scales as dS_max ~ V_cr^(-0.37), which tallies with a dipolar interaction exponent of 2/3 in EC materials and the well-proven fractional dimensionality of 2.5 for ferroelectric domain walls.
https://arxiv.org/abs/1610.08448
Chill out down there!