Investors Hangout Stock Message Boards Logo
  • Mailbox
  • Favorites
  • Boards
    • The Hangout
    • NASDAQ
    • NYSE
    • OTC Markets
    • All Boards
  • Whats Hot!
    • Recent Activity
    • Most Viewed Boards
    • Most Viewed Posts
    • Most Posted
    • Most Followed
    • Top Boards
    • Newest Boards
    • Newest Members
  • Blog
    • Recent Blog Posts
    • Recently Updated
    • News
    • Stocks
    • Crypto
    • Investing
    • Business
    • Markets
    • Economy
    • Real Estate
    • Personal Finance
  • Market Movers
  • Interactive Charts
  • Login - Join Now FREE!
  1. Home ›
  2. Stock Message Boards ›
  3. Stock Boards ›
  4. Quantum Materials Corp. (QTMM) Message Board

Rice researchers make ultrasensitive conductivity

Message Board Public Reply | Private Reply | Keep | Replies (1)                   Post New Msg
Edit Msg () | Previous | Next


Post# of 22465
Posted On: 06/11/2015 8:23:06 AM
Avatar
Posted By: chessmite
Rice researchers make ultrasensitive conductivity measurements: Photonic platform could provide 'optical signatures' for molecular electronics


Researchers at Rice University have discovered a new way to make ultrasensitive conductivity measurements at optical frequencies on high-speed nanoscale electronic components.



LANP researchers have explored the basic physics of plasmonics and shown how plasmonic interactions can be harnessed for applications as diverse as medical diagnostics, cancer treatment, solar-energy collection and optical computing.

One type of plasmonic interaction that Halas' team has long studied is plasmonic coupling, a kind of interacting dance that plasmons engage in when two or more plasmonic particles are located near one another. For instance, when two puck-shaped plasmonic nanodisks are located near one another, they act like a tiny, light-activated capacitor. When a conducting wire is used to bridge the two, their plasmon energies change and a new resonance called a "charge transfer" plasmon, appears at a distinct frequency.

In the new research, study lead author Fangfang Wen, a Rice graduate student at LANP, examined the optical properties of pairs of bridged nanodisks . When she created plasmons in the pairs, she observed the charge flowing back and forth along the wires at optical frequencies. In examining the charge transfer plasmons in these pairs, she discovered that the electrical current flowing across the junction introduced a characteristic optical signature.

"In the case where a conducting wire was present in the junction, we saw an optical signature that was very different from the case without a wire," Wen said. Wen then set up a series of experiments where she varied the width and shape of the bridging nanowires and repeated these measurements for nanowires of two different metals, gold and aluminum.

These experiments revealed two key findings. First, at the low end of the conductance scale, she found that even the slightest changes in conductivity resulted in notable optical shifts -- a finding that could be particularly interesting for molecular-electronics researchers who are interested in measuring conductivity in structures as small as a single molecule.

"We also found that our platform gave a different optical signature in cases where the level of conductance was the same but the junction material was different," Wen said. "If we had nanowires with the same conductance that were made of different materials, we saw a different optical signature. If we used the same material, with different geometries, we saw the same signature."

This specificity and repeatability could also be useful to researchers who might want to use this approach to identify the conductance of nanowires, or other nanoscale electronic components, at optical frequencies. "The optical frequency conductance of most materials is not known," she said. "This provides a useful and practical method to measure this property.

"To reduce the size of electronics even beyond today's limits, scientists want to study electron transfer through a single molecule, particularly at extremely high, even optical frequencies," Wen said. "Such changes cannot be measured using standard electronic devices or instruments that operate at microwave frequencies. Our research provides a new platform for the measurement of nanoscale conductance at optical frequencies."

http://www.nanotech-now.com/news.cgi?story_id=51659


(0)
(0)




Quantum Materials Corp. (QTMM) Stock Research Links


  1.  
  2.  


  3.  
  4.  
  5.  






Investors Hangout

Home

Mailbox

Message Boards

Favorites

Whats Hot

Blog

Settings

Privacy Policy

Terms and Conditions

Disclaimer

Contact Us

Whats Hot

Recent Activity

Most Viewed Boards

Most Viewed Posts

Most Posted Boards

Most Followed

Top Boards

Newest Boards

Newest Members

Investors Hangout Message Boards

Welcome To Investors Hangout

Stock Message Boards

American Stock Exchange (AMEX)

NASDAQ Stock Exchange (NASDAQ)

New York Stock Exchange (NYSE)

Penny Stocks - (OTC)

User Boards

The Hangout

Private

Global Markets

Australian Securities Exchange (ASX)

Euronext Amsterdam (AMS)

Euronext Brussels (BRU)

Euronext Lisbon (LIS)

Euronext Paris (PAR)

Foreign Exchange (FOREX)

Hong Kong Stock Exchange (HKEX)

London Stock Exchange (LSE)

Milan Stock Exchange (MLSE)

New Zealand Exchange (NZX)

Singapore Stock Exchange (SGX)

Toronto Stock Exchange (TSX)

Contact Investors Hangout

Email Us

Follow Investors Hangout

Twitter

YouTube

Facebook

Market Data powered by QuoteMedia. Copyright © 2025. Data delayed 15 minutes unless otherwise indicated (view delay times for all exchanges).
Analyst Ratings & Earnings by Zacks. RT=Real-Time, EOD=End of Day, PD=Previous Day. Terms of Use.

© 2025 Copyright Investors Hangout, LLC All Rights Reserved.

Privacy Policy |Do Not Sell My Information | Terms & Conditions | Disclaimer | Help | Contact Us