Investors Hangout Stock Message Boards Logo
  • Mailbox
  • Favorites
  • Boards
    • The Hangout
    • NASDAQ
    • NYSE
    • OTC Markets
    • All Boards
  • Whats Hot!
    • Recent Activity
    • Most Viewed Boards
    • Most Viewed Posts
    • Most Posted
    • Most Followed
    • Top Boards
    • Newest Boards
    • Newest Members
  • Blog
    • Recent Blog Posts
    • Recently Updated
    • News
    • Stocks
    • Crypto
    • Investing
    • Business
    • Markets
    • Economy
    • Real Estate
    • Personal Finance
  • Market Movers
  • Interactive Charts
  • Login - Join Now FREE!
  1. Home ›
  2. Stock Message Boards ›
  3. Stock Boards ›
  4. Quantum Materials Corp. (QTMM) Message Board

Quantum Dots Might Be Usable For Stem Cell Growth

Message Board Public Reply | Private Reply | Keep | Replies (0)                   Post New Msg
Edit Msg () | Previous | Next


Post# of 22465
Posted On: 03/09/2015 1:30:52 AM
Avatar
Posted By: StanleyK
Quantum Dots Might Be Usable For Stem Cell Growth

Journal of Medical Hypotheses and Ideas

Near-IR absorbing quantum dots might be usable for growth factor-based differentiation of stem cells

Abstract
For stem cell therapy of degenerative diseases, it is necessary to differentiate stem cells into the specific lineage. There are several growth factors which have been used for differentiation of stem cells. Some growth factors can dose-dependently induce differentiation of stem cells so that the increase of growth factor concentration results in production of the higher level of differentiated cells. However, due to the toxicity of some differentiation factors (e.g. retinoic acid), the lower dose of growth factors for the specific lineage differentiation of stem cells is desirable. This paper suggests a new approach in the field of controlled growth factor delivery system using semiconductor nanocrystals; known as quantum dots (QDs). This system contains polymeric microencapsulated growth factor which is conjugated to near infrared (NIR) absorbing QDs. The control release of growth factors from microcapsules in the culture plates can be achieved by irradiation. To modulate growth factor release in response to stem cells needs for differentiation, the intensity and period of irradiation will be controlled. Our hypothesis is based on the fact that QDs can absorb NIR energy and by excitation of electrons and then vibrational relaxation of them become heated when they were irradiated and then release growth factors. We believe that controlled growth factors delivery through the suggested system is an effective method to reduce the amount of growth factors required for differentiation of stem cells.

1-s2.0-S225172941500004X-fx1.jpg


(0)
(0)




Quantum Materials Corp. (QTMM) Stock Research Links


  1.  
  2.  


  3.  
  4.  
  5.  






Investors Hangout

Home

Mailbox

Message Boards

Favorites

Whats Hot

Blog

Settings

Privacy Policy

Terms and Conditions

Disclaimer

Contact Us

Whats Hot

Recent Activity

Most Viewed Boards

Most Viewed Posts

Most Posted Boards

Most Followed

Top Boards

Newest Boards

Newest Members

Investors Hangout Message Boards

Welcome To Investors Hangout

Stock Message Boards

American Stock Exchange (AMEX)

NASDAQ Stock Exchange (NASDAQ)

New York Stock Exchange (NYSE)

Penny Stocks - (OTC)

User Boards

The Hangout

Private

Global Markets

Australian Securities Exchange (ASX)

Euronext Amsterdam (AMS)

Euronext Brussels (BRU)

Euronext Lisbon (LIS)

Euronext Paris (PAR)

Foreign Exchange (FOREX)

Hong Kong Stock Exchange (HKEX)

London Stock Exchange (LSE)

Milan Stock Exchange (MLSE)

New Zealand Exchange (NZX)

Singapore Stock Exchange (SGX)

Toronto Stock Exchange (TSX)

Contact Investors Hangout

Email Us

Follow Investors Hangout

Twitter

YouTube

Facebook

Market Data powered by QuoteMedia. Copyright © 2025. Data delayed 15 minutes unless otherwise indicated (view delay times for all exchanges).
Analyst Ratings & Earnings by Zacks. RT=Real-Time, EOD=End of Day, PD=Previous Day. Terms of Use.

© 2025 Copyright Investors Hangout, LLC All Rights Reserved.

Privacy Policy |Do Not Sell My Information | Terms & Conditions | Disclaimer | Help | Contact Us