What the heck, I had to Wikipedia Superconductors
Post# of 17650
Your about as Tech savoy as they come and it wasn't the sucking of helium you were having fun with , that's probably more like it.
Talk about you survived and it explains the hard helium packed magnetic drive with flash fiber..............How do you keep up.
I need more memory..............lol
SUNYN75 you have to slow it down a bit or your going to break the rest of what I call Tech..........that's some helium funny chit !
Last paragraph .
A magnet levitating above a high-temperature superconductor, cooled with liquid nitrogen. Persistent electric current flows on the surface of the superconductor, acting to exclude the magnetic field of the magnet (Faraday's law of induction). This current effectively forms an electromagnet that repels the magnet.
Video of a Meissner effect in a high temperature superconductor (black pellet) with a NdFeB magnet (metallic)
A high-temperature superconductor levitating above a magnet
Superconductivity is a phenomenon of exactly zero electrical resistance and expulsion of magnetic fields occurring in certain materials when cooled below a characteristic critical temperature. It was discovered by Dutch physicist Heike Kamerlingh Onnes on April 8, 1911 in Leiden. Like ferromagnetism and atomic spectral lines, superconductivity is a quantum mechanical phenomenon. It is characterized by the Meissner effect, the complete ejection of magnetic field lines from the interior of the superconductor as it transitions into the superconducting state. The occurrence of the Meissner effect indicates that superconductivity cannot be understood simply as the idealization of perfect conductivity in classical physics.
The electrical resistivity of a metallic conductor decreases gradually as temperature is lowered. In ordinary conductors, such as copper or silver, this decrease is limited by impurities and other defects. Even near absolute zero, a real sample of a normal conductor shows some resistance. In a superconductor, the resistance drops abruptly to zero when the material is cooled below its critical temperature. An electric current flowing through a loop of superconducting wire can persist indefinitely with no power source.[1][2][3][4][5]
In 1986, it was discovered that some cuprate-perovskite ceramic materials have a critical temperature above 90 K (−183 °C).[6] Such a high transition temperature is theoretically impossible for a conventional superconductor, leading the materials to be termed high-temperature superconductors. Liquid nitrogen boils at 77 K, and superconduction at higher temperatures than this facilitates many experiments and applications that are less practical