(Total Views: 547)
Posted On: 08/23/2023 6:42:37 PM
Post# of 148870
https://www.uclahealth.org/news/ucla-study-id...s-memories
Credit Beldar on Investor Village.
A bit of Biology 101: Brain cells are studded with receptors. To enter a cell, a molecule must latch onto a specific receptor, which operates like a doorknob to provide access inside. The UCLA team focused on a gene that encodes a receptor for CCR5 molecules — the same receptor that HIV hitches a ride on to infect brain cells and cause memory loss in AIDS patients.
As people age, the amount of CCR5 expressed in the brain rises, and, as Silva’s lab has demonstrated in earlier research, increased CCR5 gene expression reduces memory recall.
In the current study, Silva and his colleagues discovered a key mechanism underlying mice’s ability to link memories of their experiences in two different cages. A tiny microscope opened a window into the animals’ brains, enabling the scientists to observe neurons firing and creating new memories.
They found that boosting CCR5 gene expression in the brains of mice interfered with memory linking. The animals forgot the connection between the two cages. But when the scientists deleted the CCR5 gene in the animals, the mice were able to link memories that normal mice could not.
Silva had previously studied the drug maraviroc, which the U.S. Food and Drug Administration approved in 2007 for the treatment of HIV infection. His lab found that maraviroc also suppressed CCR5 in the brains of mice.
Credit Beldar on Investor Village.
A bit of Biology 101: Brain cells are studded with receptors. To enter a cell, a molecule must latch onto a specific receptor, which operates like a doorknob to provide access inside. The UCLA team focused on a gene that encodes a receptor for CCR5 molecules — the same receptor that HIV hitches a ride on to infect brain cells and cause memory loss in AIDS patients.
As people age, the amount of CCR5 expressed in the brain rises, and, as Silva’s lab has demonstrated in earlier research, increased CCR5 gene expression reduces memory recall.
In the current study, Silva and his colleagues discovered a key mechanism underlying mice’s ability to link memories of their experiences in two different cages. A tiny microscope opened a window into the animals’ brains, enabling the scientists to observe neurons firing and creating new memories.
They found that boosting CCR5 gene expression in the brains of mice interfered with memory linking. The animals forgot the connection between the two cages. But when the scientists deleted the CCR5 gene in the animals, the mice were able to link memories that normal mice could not.
Silva had previously studied the drug maraviroc, which the U.S. Food and Drug Administration approved in 2007 for the treatment of HIV infection. His lab found that maraviroc also suppressed CCR5 in the brains of mice.
(13)
(0)
Scroll down for more posts ▼