(Total Views: 109)
Posted On: 01/05/2021 10:10:44 AM
Post# of 53546

$GTCH (OTC PINK: GTCH) ("GBT”, or the “Company”), announced that GBT Tokenize (“GBT/Tokenize) is developing new methods for health analysis based on its Kirlian Electrophotography research. GBT/Toeknize is developing a set of methods and algorithms to analyze imaging made by Kirlian Electrophotography.
Kirlian photography introduces a series of techniques that are based on the phenomenon known as electrical coronal discharge. Images that are produced using these techniques present a colorful so-called aura. Although not scientifically proven, some believe that these images can be interpreted to analyze health conditions. GBT/Tokenize reiterates that the claim that a medical conclusion can be reached based on analysis of the image (whether through AI or in person) has not been scientifically established. GBT/Tokenize is performing open research from a technological point of view, which cannot be considered medical research or portrayed to be as such.
It is believed by some that the Kirlian imaging process is made by placing an object on a photographic plate that is connected to a source of high-voltage current. A more modern way is using low voltage hand and head sensors to produce visual, interactive data that may represent health energy information.
Kirlian photography introduces a series of techniques that are based on the phenomenon known as electrical coronal discharge. Images that are produced using these techniques present a colorful so-called aura. Although not scientifically proven, some believe that these images can be interpreted to analyze health conditions. GBT/Tokenize reiterates that the claim that a medical conclusion can be reached based on analysis of the image (whether through AI or in person) has not been scientifically established. GBT/Tokenize is performing open research from a technological point of view, which cannot be considered medical research or portrayed to be as such.
It is believed by some that the Kirlian imaging process is made by placing an object on a photographic plate that is connected to a source of high-voltage current. A more modern way is using low voltage hand and head sensors to produce visual, interactive data that may represent health energy information.

