(Total Views: 320)
Posted On: 06/21/2019 7:48:10 AM
Post# of 43065
From a somewhat new Nat Geo article...some pros and cons
Seven relatively small pyrolysis plants now operate in the U.S., some still in demonstration phase, and the technology appears to be expanding worldwide, with facilities in Europe, China, India, Indonesia, and the Philippines. The American Chemistry Council estimates that the U.S. could sustain 600 pyrolysis units handling 30 tons of plastics a day, for a total of around 6.5 million tons a year—just under a fifth of the 34.5 million tons of plastic waste the country now generates.
Pyrolysis can handle the films, pouches, and multi-layered materials that most mechanical recyclers cannot, says Priyanka Bakaya, founder of the plastic-to-fuel company Renewlogy. And it produces no harmful pollutants, she says, other than “a minimal amount of carbon dioxide.”
On the other hand, critics call pyrolysis an expensive and immature technology, with startups that have come and gone over the years, unable to meet their pollution control limits, or technical and financial goals. It is still cheaper to make diesel from fossil fuel than from waste plastic.
But is it renewable?
Is fuel from plastic a renewable resource? According to the Database of State Incentives for Renewables and Efficiency, 16 U.S. states consider municipal solid waste, including the plastics in it, a renewable fuel source. But plastics aren’t renewable in the sense that wood, paper, or cotton are. Plastics don’t grow from sunlight: We make them from fossil fuels extracted from the ground, and each step in that process has the potential to pollute.
In the European Union, only the biogenic fraction of municipal solid waste is considered renewable. But no matter how the EU counts its carbon, burning plastics for fuel in incinerators, along with the rest of its waste, seems to contravene the union’s adoption, in 2015, of “circular economy” goals, which aim to keep resources in use for as long as possible and call for all plastic packaging to be reusable, recyclable, or compostable by 2030.
“When you take fossil fuels out of the ground, make plastics with them, then burn those plastics for energy, it's clear that this is not a circle—it's a line,” says Rob Opsomer of the Ellen MacArthur Foundation, which promotes circular economy efforts. But pyrolysis, Opsomer adds, can be considered part of the circular economy if its outputs are used as feedstock for new high-quality materials—including durable plastics.
Seven relatively small pyrolysis plants now operate in the U.S., some still in demonstration phase, and the technology appears to be expanding worldwide, with facilities in Europe, China, India, Indonesia, and the Philippines. The American Chemistry Council estimates that the U.S. could sustain 600 pyrolysis units handling 30 tons of plastics a day, for a total of around 6.5 million tons a year—just under a fifth of the 34.5 million tons of plastic waste the country now generates.
Pyrolysis can handle the films, pouches, and multi-layered materials that most mechanical recyclers cannot, says Priyanka Bakaya, founder of the plastic-to-fuel company Renewlogy. And it produces no harmful pollutants, she says, other than “a minimal amount of carbon dioxide.”
On the other hand, critics call pyrolysis an expensive and immature technology, with startups that have come and gone over the years, unable to meet their pollution control limits, or technical and financial goals. It is still cheaper to make diesel from fossil fuel than from waste plastic.
But is it renewable?
Is fuel from plastic a renewable resource? According to the Database of State Incentives for Renewables and Efficiency, 16 U.S. states consider municipal solid waste, including the plastics in it, a renewable fuel source. But plastics aren’t renewable in the sense that wood, paper, or cotton are. Plastics don’t grow from sunlight: We make them from fossil fuels extracted from the ground, and each step in that process has the potential to pollute.
In the European Union, only the biogenic fraction of municipal solid waste is considered renewable. But no matter how the EU counts its carbon, burning plastics for fuel in incinerators, along with the rest of its waste, seems to contravene the union’s adoption, in 2015, of “circular economy” goals, which aim to keep resources in use for as long as possible and call for all plastic packaging to be reusable, recyclable, or compostable by 2030.
“When you take fossil fuels out of the ground, make plastics with them, then burn those plastics for energy, it's clear that this is not a circle—it's a line,” says Rob Opsomer of the Ellen MacArthur Foundation, which promotes circular economy efforts. But pyrolysis, Opsomer adds, can be considered part of the circular economy if its outputs are used as feedstock for new high-quality materials—including durable plastics.
(0)
(0)
Scroll down for more posts ▼