Investors Hangout Stock Message Boards Logo
  • Home
  • Mailbox
  • Boards
  • Favorites
  • Whats Hot!
  • Login - Join Now!
Coffee Shoppe
Posted On: 01/30/2013 7:18:04 AM
Post# of 63835
Avatar
Posted By: PoemStone
Re: Shalom Star #4036

Spring May Come Earlier to North American Forests, Increasing Uptake of Carbon Dioxide


Jan. 29, 2013 — Trees in the con­ti­nen­tal U.S. could send out new spring leaves up to 17 days ear­lier in the com­ing cen­tury than they did before global tem­per­a­tures started to rise, accord­ing to a new study by Prince­ton Uni­ver­sity researchers. These climate-driven changes could lead to changes in the com­po­si­tion of north­east­ern forests and give a boost to their abil­ity to take up car­bon dioxide.


Trees in the con­ti­nen­tal U.S. could send out new spring leaves up to 17 days ear­lier in the com­ing cen­tury than they did before global tem­per­a­tures started to rise, accord­ing to a new study by Prince­ton Uni­ver­sity researchers. These climate-driven changes could lead to changes in the com­po­si­tion of north­east­ern forests and give a boost to their abil­ity to take up car­bon dioxide.






Share This:




39


Related Ads :


  • Climate Change

  • Global Warming

  • Trees Plants

  • Agriculture



See Also:

Plants & Animals


  • Trees

  • Botany

  • Agriculture and Food


Earth & Climate


  • Forest

  • Climate

  • Global Warming


Reference


  • Tortoise

  • Animal

  • King Cobra

  • Chromosome



Trees play an impor­tant role in tak­ing up car­bon diox­ide from the atmos­phere, so researchers led by David Med­vigy, assis­tant pro­fes­sor in Princeton's depart­ment of geo­sciences, wanted to eval­u­ate pre­dic­tions of spring bud­burst -- when decid­u­ous trees push out new growth after months of win­ter dor­mancy -- from mod­els that pre­dict how car­bon emis­sions will impact global temperatures.


The date of bud­burst affects how much car­bon diox­ide is taken up each year, yet most cli­mate mod­els have used overly sim­plis­tic schemes for rep­re­sent­ing spring bud­burst, mod­el­ing for exam­ple a sin­gle species of tree to rep­re­sent all the trees in a geo­graphic region.


In 2012, the Prince­ton team pub­lished a new model that relied on warm­ing tem­per­a­tures and the wan­ing num­ber of cold days to pre­dict spring bud­burst. The model, which was pub­lished in the Jour­nal of Geo­phys­i­cal Research , proved accu­rate when com­pared to data on actual bud­burst in the north­east­ern United States.


In the cur­rent paper pub­lished online in Geo­phys­i­cal Research Let­ters , Med­vigy and his col­leagues tested the model against a broader set of obser­va­tions col­lected by the USA National Phe­nol­ogy Net­work, a nation-wide tree ecol­ogy mon­i­tor­ing net­work con­sist­ing of fed­eral agen­cies, edu­ca­tional insti­tu­tions and cit­i­zen sci­en­tists. The team incor­po­rated the 2012 model into pre­dic­tions of future bud­burst based on four pos­si­ble cli­mate sce­nar­ios used in plan­ning exer­cises by the Inter­gov­ern­men­tal Panel on Cli­mate Change.


The researchers included Su-Jong Jeong, a post­doc­toral research asso­ciate in Geo­sciences, along with Elena Shevli­akova, a senior cli­mate mod­eler, and Sergey Maly­shev, a pro­fes­sional spe­cial­ist, both in the Depart­ment of Ecol­ogy and Evo­lu­tion­ary Biol­ogy and asso­ci­ated with the U.S. National Oceanic and Atmos­pheric Administration's Geo­phys­i­cal Fluid Dynam­ics Laboratory.


The team esti­mated that, com­pared to the late 20 th cen­tury, red maple bud­burst will occur 8 to 40 days ear­lier, depend­ing on the part of the coun­try, by the year 2100. They found that the north­ern parts of the United States will have more pro­nounced changes than the south­ern parts, with the largest changes occur­ring in Maine, New York, Michi­gan, and Wisconsin.


The researchers also eval­u­ated how warm­ing tem­per­a­tures could affect the bud­burst date of dif­fer­ent species of tree. They found that bud­burst shifted to ear­lier in the year in both early-budding trees such as com­mon aspen ( Pop­u­lus tremu­loides ) and late-budding trees such as red maple ( Acer rubrum ), but that the effect was greater in the late-budding trees and that over time the dif­fer­ences in bud­ding dates narrowed.


The researchers noted that early bud­burst may give decid­u­ous trees, such as oaks and maples, a com­pet­i­tive advan­tage over ever­green trees such as pines and hem­locks. With decid­u­ous trees grow­ing for longer peri­ods of the year, they may begin to out­strip growth of ever­greens, lead­ing to last­ing changes in for­est make-up.


The researchers fur­ther pre­dicted that warm­ing will trig­ger a speed-up of the spring "green­wave," or bud­burst that moves from south to north across the con­ti­nent dur­ing the spring.


The find­ing is also inter­est­ing from the stand­point of future changes in spring­time weather, said Med­vigy, because bud­burst causes an abrupt change in how quickly energy, water and pol­lu­tants are exchanged between the land and the atmos­phere. Once the leaves come out, energy from the sun is increas­ingly used to evap­o­rate water from the leaves rather than to heat up the sur­face. This can lead to changes in daily tem­per­a­ture ranges, sur­face humid­ity, stream­flow, and even nutri­ent loss from ecosys­tems, accord­ing to Medvigy


(0)
(0)






Featured stocks: Coffee Shoppe
For conservative debate: "Keeping it Real"
Game Changing stock $SHMP




  • New Post - Investors HangoutNew Post

  • Public Reply - Investors HangoutPublic Reply

  • Private Reply - Investors HangoutPrivate Reply

  • Board - Investors HangoutBoard

  • More - Investors HangoutMore

  • Keep Post - Investors HangoutKeep Post
  • Report Post - Investors HangoutReport Post
  • Home - Investors HangoutHome
  • Mailbox - Investors HangoutMailbox
  • Boards - Investors HangoutBoards
  • Favorites - Investors HangoutFavorites
  • Whats Hot! - Investors HangoutWhats Hot!
  • Settings - Investors HangoutSettings
  • Login - Investors HangoutLogin
  • Live Site - Investors HangoutLive Site