(Total Views: 387)
Posted On: 02/04/2019 9:17:59 PM
Post# of 82676
I seriously don't understand how they can argue it's not geared towards a computer specific problem. Read the first few sentences on the background of the invention. Does that not count or something??
MULTICHANNEL DEVICE UTILIZING A CENTRALIZED OUT-OF-BAND AUTHENTICATION SYSTEM (COBAS)
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to security networks for computer network applications, and, more particularly, to a security network which provides user authentication by an out-of-band system that is entirely outside the host computer network being accessed. In addition, the out-of-band system optionally includes provision for biometric identification as part of the authentication process.
2. Background of the Invention
In the past, there have typically been three categories of computer security systems, namely, access control, encryption and message authentication, and intrusion detection. The access control systems act as the first line of defense against unwanted intrusions, and serve to prevent hackers who do not have the requisite information, e.g. the password, etc., from accessing the computer networks and systems. Secondly, the encryption and message authentication systems ensure that any information that is stored or in transit is not readable and cannot be modified. In the event that a hacker is able to break into the computer network, these systems prevent the information from being understood, and, as such, encryption systems as the second line of defense. Further intrusion detection systems uncover patterns of hacker attacks and viruses and, when discovered provide an alarm to the system administrator so that appropriate action can be taken. Since detection systems operate only after a hacker has successfully penetrated a system, such systems act as a third line of defense.
Obviously, as an access control system is the first line of defense, it is important that the selection thereof be well-suited to the application. In access control systems there is a broad dichotomy between user authentication and host authentication systems. In current practice, the most common user authentication systems include simple password systems, random password systems, and biometric systems. The simple password systems are ubiquitous in our society with every credit card transaction using a pin identification number, every automatic teller machine inquiry looking toward a password for access, and even telephone answering messages using simple password systems for control.
Additionally, when random password systems are used, another level of sophistication is added. In these systems, the password changes randomly every time a system is access. These systems are based on encryption or a password that changes randomly in a manner that is synchronized with an authorization server. The Secure ID card is an example of such a system. Random password systems require complimentary software and/or hardware at each computer authorized to use the network.
In biometric systems, characteristics of the human body, such as voice, fingerprints or retinal scan, are used to control access. These systems require software and/or hardware at each computer to provide authorization for the use of the network.
Another category of access control is that of host authentication. Here the commonest systems are those of “callback” and “firewall” systems. Callback systems are those systems which work by calling a computer back at a predetermined telephone number. These systems authenticate the location of a computer and are suitable for dial-up (modem) networks; however, such systems are ineffective when the attack comes via the Internet. On the other hand, firewall systems are designed to prevent attacks coming from the Internet and work by allowing access only from computers within a network. Even though firewall systems are implemented either as standalone systems or incorporated into routers, skilled hackers are able to penetrate host authentication systems.
Typically, access-control security products, as described above, are in-band authentication systems with the data and the authentication information on the same network. Thus, upon accessing a computer, a computer prompt requests that you enter your password and, upon clearance, access is granted. In this example, all information exchanged is on the same network or in-band. The technical problem created thereby is that the hacker is in a self-authenticating environment.
Except for callback systems, the above access control products authenticate only the user and not the location. When computer networks could only be accessed by modems, the authentication of location by dialing back the access-requesting computer, provided a modicum of security. Now, as virtually all computer networks are accessible by modem-independent internet connection, location authentication by callback is no longer secure. The lack of security arises as there is no necessary connection between the internet address and a location, and, in fact, an internet address most often changes from connection to connection. Thus, callback systems are rendered useless against attacks originating from the internet.
Read More: https://investorshangout.com/post/view?id=532...z5ecRUBHyj
MULTICHANNEL DEVICE UTILIZING A CENTRALIZED OUT-OF-BAND AUTHENTICATION SYSTEM (COBAS)
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to security networks for computer network applications, and, more particularly, to a security network which provides user authentication by an out-of-band system that is entirely outside the host computer network being accessed. In addition, the out-of-band system optionally includes provision for biometric identification as part of the authentication process.
2. Background of the Invention
In the past, there have typically been three categories of computer security systems, namely, access control, encryption and message authentication, and intrusion detection. The access control systems act as the first line of defense against unwanted intrusions, and serve to prevent hackers who do not have the requisite information, e.g. the password, etc., from accessing the computer networks and systems. Secondly, the encryption and message authentication systems ensure that any information that is stored or in transit is not readable and cannot be modified. In the event that a hacker is able to break into the computer network, these systems prevent the information from being understood, and, as such, encryption systems as the second line of defense. Further intrusion detection systems uncover patterns of hacker attacks and viruses and, when discovered provide an alarm to the system administrator so that appropriate action can be taken. Since detection systems operate only after a hacker has successfully penetrated a system, such systems act as a third line of defense.
Obviously, as an access control system is the first line of defense, it is important that the selection thereof be well-suited to the application. In access control systems there is a broad dichotomy between user authentication and host authentication systems. In current practice, the most common user authentication systems include simple password systems, random password systems, and biometric systems. The simple password systems are ubiquitous in our society with every credit card transaction using a pin identification number, every automatic teller machine inquiry looking toward a password for access, and even telephone answering messages using simple password systems for control.
Additionally, when random password systems are used, another level of sophistication is added. In these systems, the password changes randomly every time a system is access. These systems are based on encryption or a password that changes randomly in a manner that is synchronized with an authorization server. The Secure ID card is an example of such a system. Random password systems require complimentary software and/or hardware at each computer authorized to use the network.
In biometric systems, characteristics of the human body, such as voice, fingerprints or retinal scan, are used to control access. These systems require software and/or hardware at each computer to provide authorization for the use of the network.
Another category of access control is that of host authentication. Here the commonest systems are those of “callback” and “firewall” systems. Callback systems are those systems which work by calling a computer back at a predetermined telephone number. These systems authenticate the location of a computer and are suitable for dial-up (modem) networks; however, such systems are ineffective when the attack comes via the Internet. On the other hand, firewall systems are designed to prevent attacks coming from the Internet and work by allowing access only from computers within a network. Even though firewall systems are implemented either as standalone systems or incorporated into routers, skilled hackers are able to penetrate host authentication systems.
Typically, access-control security products, as described above, are in-band authentication systems with the data and the authentication information on the same network. Thus, upon accessing a computer, a computer prompt requests that you enter your password and, upon clearance, access is granted. In this example, all information exchanged is on the same network or in-band. The technical problem created thereby is that the hacker is in a self-authenticating environment.
Except for callback systems, the above access control products authenticate only the user and not the location. When computer networks could only be accessed by modems, the authentication of location by dialing back the access-requesting computer, provided a modicum of security. Now, as virtually all computer networks are accessible by modem-independent internet connection, location authentication by callback is no longer secure. The lack of security arises as there is no necessary connection between the internet address and a location, and, in fact, an internet address most often changes from connection to connection. Thus, callback systems are rendered useless against attacks originating from the internet.
Read More: https://investorshangout.com/post/view?id=532...z5ecRUBHyj
(4)
(0)
Scroll down for more posts ▼