(Total Views: 545)
Posted On: 07/24/2018 7:25:07 AM
Post# of 22461
Re: Puravida19 #10177
Let Alta have the highest tested efficiency. Solterra QDSC will probably also be single junction, but with half the layers and capable of being flexible and made in R2R printers for mass production. Solterra will have the 'record' for lowest priced QDSC.
Here is an example from 2018 reseach in buffer layers for a R2R QDSC by Chinese scientists. Note the illustration of 6 layers in the cell.
Silane-Capped ZnO Nanoparticles for Use as the Electron Transport Layer in Inverted Organic Solar Cells
Zinc oxide (ZnO) nanoparticles are widely used as electron- transport layer (ETL) materials in organic solar cells and are considered to be the candidate with the most potential for ETLs in roll-to-roll (R2R)-printed photovoltaics. However, the tendency of the nanoparticles to aggregate reduces the stability of the metal oxide inks and creates many surface defects, which is a major barrier to its printing application. With the aim of improving the stability of metal oxide nanoparticle dispersions and suppressing the formation of surface defects, we prepared 3-aminopropyltrimethoxysilane (APTMS)-capped ZnO (ZnO@APTMS) nanoparticles through surface ligand exchange. The ZnO@APTMS nanoparticles exhibited excellent dispersibility in ethanol, an environmentally friendly solvent, and remained stable in air for at least one year without any aggregation. The capping of the ZnO nanoparticles with APTMS also reduced the number of surface-adsorbed oxygen defects, improved the charge transfer efficiency, and suppressed the light-soaking effect. The thickness of the ZnO@APTMS ETL could reach 100 nm without an obvious decrease in the performance. Large-area APTMS-modified ZnO films were successfully fabricated through roll-to-roll microgravure printing and exhibited good performance in flexible organic solar cells. This work demonstrated the distinct advantages of this ZnO@APTMS ETL as a potential buffer layer for printed organic electronics.
Here is an example from 2018 reseach in buffer layers for a R2R QDSC by Chinese scientists. Note the illustration of 6 layers in the cell.
Silane-Capped ZnO Nanoparticles for Use as the Electron Transport Layer in Inverted Organic Solar Cells
Zinc oxide (ZnO) nanoparticles are widely used as electron- transport layer (ETL) materials in organic solar cells and are considered to be the candidate with the most potential for ETLs in roll-to-roll (R2R)-printed photovoltaics. However, the tendency of the nanoparticles to aggregate reduces the stability of the metal oxide inks and creates many surface defects, which is a major barrier to its printing application. With the aim of improving the stability of metal oxide nanoparticle dispersions and suppressing the formation of surface defects, we prepared 3-aminopropyltrimethoxysilane (APTMS)-capped ZnO (ZnO@APTMS) nanoparticles through surface ligand exchange. The ZnO@APTMS nanoparticles exhibited excellent dispersibility in ethanol, an environmentally friendly solvent, and remained stable in air for at least one year without any aggregation. The capping of the ZnO nanoparticles with APTMS also reduced the number of surface-adsorbed oxygen defects, improved the charge transfer efficiency, and suppressed the light-soaking effect. The thickness of the ZnO@APTMS ETL could reach 100 nm without an obvious decrease in the performance. Large-area APTMS-modified ZnO films were successfully fabricated through roll-to-roll microgravure printing and exhibited good performance in flexible organic solar cells. This work demonstrated the distinct advantages of this ZnO@APTMS ETL as a potential buffer layer for printed organic electronics.
(1)
(0)
Scroll down for more posts ▼