Posted On: 12/04/2014 12:34:47 AM
Post# of 22463
Rice University is at the very forefront of research into unconventional superconductors, with a multi-disciplinary team engaged in crystal growth, physical property characterization, optical and neutron spectroscopies, and theoretical analysis. This research ties in to the other research foci of RCQM. Efforts to search for new superconductors often end up with the discovery of non-superconducting materials with exotic electronic properties. Understanding the mechanism of unconventional superconductivity is strongly coupled to the overall studies of the role of strong correlations in many-body physics in general - See more at: http://rcqm.rice.edu/research-page/#sthash.0IvKSU1H.dpuf
Quantum criticality is an established route that leads to unusual excitations and emergent phases in electronic systems. It might hold the key to properties such as high temperature superconductivity. Rice university is prominent worldwide on this subject. Our studies are conducted in a variety of contexts, including heavy fermion systems, iron-based materials and itinerant magnets. - See more at: http://rcqm.rice.edu/research-page/#sthash.0IvKSU1H.dpuf
A weakly interacting system can be described by a distribution function, which assigns particular particles to particular states. This idea is not helpful when the system is strongly interacting, however, for the same reason that it is not helpful to characterize individual H2O molecules in describing the flow of liquid water. What is the analogous framework for non-equilibrium quantum dynamics, and what are the intrinsic departures from classical hydrodynamics? Theoretical results by Rice researchers suggest that ultrafast and ultracold experiments can realize new quantum states of matter that only exist out of equilibrium. - See more at: http://rcqm.rice.edu/research-page/#sthash.0IvKSU1H.dpuf
Quantum criticality is an established route that leads to unusual excitations and emergent phases in electronic systems. It might hold the key to properties such as high temperature superconductivity. Rice university is prominent worldwide on this subject. Our studies are conducted in a variety of contexts, including heavy fermion systems, iron-based materials and itinerant magnets. - See more at: http://rcqm.rice.edu/research-page/#sthash.0IvKSU1H.dpuf
A weakly interacting system can be described by a distribution function, which assigns particular particles to particular states. This idea is not helpful when the system is strongly interacting, however, for the same reason that it is not helpful to characterize individual H2O molecules in describing the flow of liquid water. What is the analogous framework for non-equilibrium quantum dynamics, and what are the intrinsic departures from classical hydrodynamics? Theoretical results by Rice researchers suggest that ultrafast and ultracold experiments can realize new quantum states of matter that only exist out of equilibrium. - See more at: http://rcqm.rice.edu/research-page/#sthash.0IvKSU1H.dpuf


Scroll down for more posts ▼